@book{Mertens1983, author = {Mertens, Josef}, title = {Instation{\"a}re Str{\"o}mungen von Gasen mit brennbaren Partikeln}, address = {Aachen}, pages = {III, 245 S. : graph. Darst.}, year = {1983}, language = {de} } @article{SchmitzBartzHilgeretal.1990, author = {Schmitz, G{\"u}nter and Bartz, R. and Hilger, U. and Siedentop, M.}, title = {Intelligent Alcohol Fuel Sensor}, year = {1990}, language = {en} } @article{MertensKelmVelden1999, author = {Mertens, Josef and Kelm, R. and Velden, A. van der}, title = {Interdisziplin{\"a}re Auslegung eines Verkehrsflugzeugfl{\"u}gels}, series = {DGLR-Jahrbuch 1999 Bd. 3}, journal = {DGLR-Jahrbuch 1999 Bd. 3}, pages = {1605 -- 1610}, year = {1999}, language = {de} } @book{Ley1998, author = {Ley, Wilfried}, title = {Internationale Raumstation : Konfiguration, Betrieb und Nutzung ; Gemeinschaftsveranstaltung der FH Aachen, der DGLR und des DLR / 11. Raumfahrt-Kolloquium an der Fachhochschule Aachen, 26. November 1998. / Ley, Wilfried [Hrsg.]}, publisher = {DGLR}, address = {Bonn}, isbn = {3-932182-04-9}, pages = {VIII, 208 S. : Ill., graph. Darst., 30 cm}, year = {1998}, language = {de} } @article{Dachwald2004, author = {Dachwald, Bernd}, title = {Interplanetary Mission Analysis for Non-Perfectly Reflecting Solar Sailcraft Using Evolutionary Neurocontrol}, series = {Astrodynamics 2003 : proceedings of the AAS/AIAA Astrodynamics Conference held August 3 - 7, 2003, Big Sky, Montana / ed. by Jean de Lafontaine. - Pt. 2. - (Advances in the astronautical sciences ; 116,2)}, journal = {Astrodynamics 2003 : proceedings of the AAS/AIAA Astrodynamics Conference held August 3 - 7, 2003, Big Sky, Montana / ed. by Jean de Lafontaine. - Pt. 2. - (Advances in the astronautical sciences ; 116,2)}, publisher = {Univelt}, address = {San Diego, Calif.}, isbn = {0-87703-509-1}, pages = {1247 -- 1262}, year = {2004}, language = {en} } @inproceedings{SpurmannOhndorfDachwaldetal.2009, author = {Spurmann, J{\"o}rn and Ohndorf, Andreas and Dachwald, Bernd and Seboldt, Wolfgang and L{\"o}b, Horst and Schartner, Karl-Heinz}, title = {Interplanetary trajectory optimization for a sep mission to Saturn}, series = {60th International Astronautical Congress 2009}, booktitle = {60th International Astronautical Congress 2009}, isbn = {9781615679089}, pages = {5234 -- 5248}, year = {2009}, abstract = {The recently proposed NASA and ESA missions to Saturn and Jupiter pose difficult tasks to mission designers because chemical propulsion scenarios are not capable of transferring heavy spacecraft into the outer solar system without the use of gravity assists. Thus our developed mission scenario based on the joint NASA/ESA Titan Saturn System Mission baselines solar electric propulsion to improve mission flexibility and transfer time. For the calculation of near-globally optimal low-thrust trajectories, we have used a method called Evolutionary Neurocontrol, which is implemented in the low-thrust trajectory optimization software InTrance. The studied solar electric propulsion scenario covers trajectory optimization of the interplanetary transfer including variations of the spacecraft's thrust level, the thrust unit's specific impulse and the solar power generator power level. Additionally developed software extensions enabled trajectory optimization with launcher-provided hyperbolic excess energy, a complex solar power generator model and a variable specific impulse ion engine model. For the investigated mission scenario, Evolutionary Neurocontrol yields good optimization results, which also hold valid for the more elaborate spacecraft models. Compared to Cassini/Huygens, the best found solutions have faster transfer times and a higher mission flexibility in general.}, language = {en} } @article{LoebSchartnerDachwaldetal.2012, author = {Loeb, Horst Wolfgang and Schartner, Karl-Heinz and Dachwald, Bernd and Ohndorf, Andreas and Seboldt, Wolfgang}, title = {Interstellar heliopause probe}, series = {Труды МАИ}, journal = {Труды МАИ}, number = {60}, publisher = {Moskauer Staatliches Luftfahrtinstitut (МАИ)}, address = {Moskau}, pages = {2 -- 2}, year = {2012}, abstract = {There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft traveling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by European Space Agency (ESA). Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope-electric propulsion (REP). As a further alternative, we here investigate a combination of solar-electric propulsion (SEP) and REP. The SEP stage consists of six 22-cms diameter RIT-22 ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW at begin of mission (BOM) is provided by a lightweight solar array.}, language = {en} } @article{HeinEubanksHibberdetal.2020, author = {Hein, Andreas M. and Eubanks, T. Marshall and Hibberd, Adam and Fries, Dan and Schneider, Jean and Lingam, Manasvi and Kennedy, Robert and Perakis, Nikolaos and Dachwald, Bernd and Kervella, Pierre}, title = {Interstellar Now! Missions to and sample returns from nearby interstellar objects}, publisher = {Elsevier}, address = {Amsterdam}, pages = {1 -- 8}, year = {2020}, abstract = {The recently discovered first high velocity hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Interstellar objects likely formed very far from the solar system in both time and space; their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system.}, language = {en} } @article{HeinEubanksLingametal.2022, author = {Hein, Andreas M. and Eubanks, T. Marshall and Lingam, Manasvi and Hibberd, Adam and Fries, Dan and Schneider, Jean and Kervella, Pierre and Kennedy, Robert and Perakis, Nikolaos and Dachwald, Bernd}, title = {Interstellar now! Missions to explore nearby interstellar objects}, series = {Advances in Space Research}, volume = {69}, journal = {Advances in Space Research}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.06.052}, pages = {402 -- 414}, year = {2022}, abstract = {The recently discovered first hyperbolic objects passing through the Solar System, 1I/'Oumuamua and 2I/Borisov, have raised the question about near term missions to Interstellar Objects. In situ spacecraft exploration of these objects will allow the direct determination of both their structure and their chemical and isotopic composition, enabling an entirely new way of studying small bodies from outside our solar system. In this paper, we map various Interstellar Object classes to mission types, demonstrating that missions to a range of Interstellar Object classes are feasible, using existing or near-term technology. We describe flyby, rendezvous and sample return missions to interstellar objects, showing various ways to explore these bodies characterizing their surface, dynamics, structure and composition. Their direct exploration will constrain their formation and history, situating them within the dynamical and chemical evolution of the Galaxy. These mission types also provide the opportunity to explore solar system bodies and perform measurements in the far outer solar system.}, language = {en} } @inproceedings{WeissAbanteribaEsch2007, author = {Weiss, Alexander and Abanteriba, Sylvester and Esch, Thomas}, title = {Investigation of Flow Separation Inside a Conical Rocket Nozzle With the Aid of an Annular Cross Flow}, series = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, booktitle = {Proceedings of the ASME/JSME 2007 5th Joint Fluids Engineering Conference. Volume 1: Symposia, Parts A and B}, publisher = {American Society of Mechanical Engineers (ASME)}, address = {New York}, isbn = {0-7918-4288-6}, doi = {10.1115/FEDSM2007-37387}, pages = {1861 -- 1871}, year = {2007}, abstract = {Flow separation is a phenomenon that occurs in all kinds of supersonic nozzles sometimes during run-up and shut-down operations. Especially in expansion nozzles of rocket engines with large area ratio, flow separation can trigger strong side loads that can damage the structure of the nozzle. The investigation presented in this paper seeks to establish measures that may be applied to alter the point of flow separation. In order to achieve this, a supersonic nozzle was placed at the exit plane of the conical nozzle. This resulted in the generation of cross flow surrounding the core jet flow from the conical nozzle. Due to the entrainment of the gas stream from the conical nozzle the pressure in its exit plane was found to be lower than that of the ambient. A Cold gas instead of hot combustion gases was used as the working fluid. A mathematical simulation of the concept was validated by experiment. Measurements confirmed the simulation results that due to the introduction of a second nozzle the pressure in the separated region of the conical nozzle was significantly reduced. It was also established that the boundary layer separation inside the conical nozzle was delayed thus allowing an increased degree of overexpansion. The condition established by the pressure measurements was also demonstrated qualitatively using transparent nozzle configurations.}, language = {en} }