@article{MolinnusMuschallikGonzalezetal.2018, author = {Molinnus, Denise and Muschallik, Lukas and Gonzalez, Laura Osorio and Bongaerts, Johannes and Wagner, Torsten and Selmer, Thorsten and Siegert, Petra and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development and characterization of a field-effect biosensor for the detection of acetoin}, series = {Biosensors and Bioelectronics}, volume = {115}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.bios.2018.05.023}, pages = {1 -- 6}, year = {2018}, abstract = {A capacitive electrolyte-insulator-semiconductor (EIS) field-effect biosensor for acetoin detection has been presented for the first time. The EIS sensor consists of a layer structure of Al/p-Si/SiO₂/Ta₂O₅/enzyme acetoin reductase. The enzyme, also referred to as butane-2,3-diol dehydrogenase from B. clausii DSM 8716T, has been recently characterized. The enzyme catalyzes the (R)-specific reduction of racemic acetoin to (R,R)- and meso-butane-2,3-diol, respectively. Two different enzyme immobilization strategies (cross-linking by using glutaraldehyde and adsorption) have been studied. Typical biosensor parameters such as optimal pH working range, sensitivity, hysteresis, linear concentration range and long-term stability have been examined by means of constant-capacitance (ConCap) mode measurements. Furthermore, preliminary experiments have been successfully carried out for the detection of acetoin in diluted white wine samples.}, language = {en} } @article{WeldenSchejaSchoeningetal.2018, author = {Welden, Rene and Scheja, Sabrina and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Wagner, Torsten}, title = {Electrochemical Evaluation of Light-Addressable Electrodes Based on TiO2 for the Integration in Lab-on-Chip Systems}, series = {physica status solidi a : applications and materials sciences}, volume = {215}, journal = {physica status solidi a : applications and materials sciences}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201800150}, pages = {Article number 1800150}, year = {2018}, abstract = {In lab-on-chip systems, electrodes are important for the manipulation (e.g., cell stimulation, electrolysis) within such systems. An alternative to commonly used electrode structures can be a light-addressable electrode. Here, due to the photoelectric effect, the conducting area can be adjusted by modification of the illumination area which enables a flexible control of the electrode. In this work, titanium dioxide based light-addressable electrodes are fabricated by a sol-gel technique and a spin-coating process, to deposit a thin film on a fluorine-doped tin oxide glass. To characterize the fabricated electrodes, the thickness, and morphological structure are measured by a profilometer and a scanning electron microscope. For the electrochemical behavior, the dark current and the photocurrent are determined for various film thicknesses. For the spatial resolution behavior, the dependency of the photocurrent while changing the area of the illuminated area is studied. Furthermore, the addressing of single fluid compartments in a three-chamber system, which is added to the electrode, is demonstrated.}, language = {en} } @incollection{SchoeningPoghossian2018, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Enzyme und Biosensorik}, series = {Einf{\"u}hrung in die Enzymtechnologie}, booktitle = {Einf{\"u}hrung in die Enzymtechnologie}, publisher = {Springer Spektrum}, address = {Berlin}, isbn = {978-3-662-57619-9}, doi = {10.1007/978-3-662-57619-9_18}, pages = {323 -- 347}, year = {2018}, abstract = {Enzymbasierte Biosensoren finden seit mehr als f{\"u}nf Jahrzehnten einen prosperierenden Wachstumsmarkt und werden zunehmend auch in biotechnologischen Prozessen eingesetzt. In diesem Kapitel werden, ausgehend vom Sensorbegriff und typischen Kenngr{\"o}ßen f{\"u}r Biosensoren (Abschn. 18.1), elektrochemische Enzym-Biosensoren vorgestellt und deren typischen Einsatzgebiete diskutiert (Abschn. 18.2). Ein Blick {\"u}ber den „Tellerrand" hinaus zeigt alternative Transduktorprinzipien (Abschn. 18.3) und f{\"u}hrt abschließend in aktuelle Forschungstrends ein (Abschn. 18.4).}, language = {de} } @article{JildehOberlaenderKirchneretal.2018, author = {Jildeh, Zaid B. and Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {Experimental and Numerical Analyzes of a Sensor Based on Interdigitated Electrodes for Studying Microbiological Alterations}, series = {physica status solidi (a): applications and materials science}, volume = {215}, journal = {physica status solidi (a): applications and materials science}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201700920}, pages = {Artikel 1700920}, year = {2018}, abstract = {In this work, a cell-based biosensor to evaluate the sterilization efficacy of hydrogen peroxide vapor sterilization processes is characterized. The transducer of the biosensor is based on interdigitated gold electrodes fabricated on an inert glass substrate. Impedance spectroscopy is applied to evaluate the sensor behavior and the alteration of test microorganisms due to the sterilization process. These alterations are related to changes in relative permittivity and electrical conductivity of the bacterial spores. Sensor measurements are conducted with and without bacterial spores (Bacillus atrophaeus), as well as after an industrial sterilization protocol. Equivalent two-dimensional numerical models based on finite element method of the periodic finger structures of the interdigitated gold electrodes are designed and validated using COMSOL® Multiphysics software by the application of known dielectric properties. The validated models are used to compute the electrical properties at different sensor states (blank, loaded with spores, and after sterilization). As a final result, we will derive and tabulate the frequency-dependent electrical parameters of the spore layer using a novel model that combines experimental data with numerical optimization techniques.}, language = {en} } @article{PoghossianJablonskiKochetal.2018, author = {Poghossian, Arshak and Jablonski, Melanie and Koch, Claudia and Bronder, Thomas and Rolka, David and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-effect biosensor using virus particles as scaffolds for enzyme immobilization}, series = {Biosensors and Bioelectronics}, volume = {110}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0956-5663}, doi = {10.1016/j.bios.2018.03.036}, pages = {168 -- 174}, year = {2018}, abstract = {A field-effect biosensor employing tobacco mosaic virus (TMV) particles as scaffolds for enzyme immobilization is presented. Nanotubular TMV scaffolds allow a dense immobilization of precisely positioned enzymes with retained activity. To demonstrate feasibility of this new strategy, a penicillin sensor has been developed by coupling a penicillinase with virus particles as a model system. The developed field-effect penicillin biosensor consists of an Al-p-Si-SiO₂-Ta₂O₅-TMV structure and has been electrochemically characterized in buffer solutions containing different concentrations of penicillin G. In addition, the morphology of the biosensor surface with virus particles was characterized by scanning electron microscopy and atomic force microscopy methods. The sensors possessed a high penicillin sensitivity of ~ 92 mV/dec in a nearly-linear range from 0.1 mM to 10 mM, and a low detection limit of about 50 µM. The long-term stability of the penicillin biosensor was periodically tested over a time period of about one year without any significant loss of sensitivity. The biosensor has also been successfully applied for penicillin detection in bovine milk samples.}, language = {en} } @article{VahidpourOberlaenderSchoening2018, author = {Vahidpour, Farnoosh and Oberl{\"a}nder, Jan and Sch{\"o}ning, Michael Josef}, title = {Flexible Calorimetric Gas Sensors for Detection of a Broad Concentration Range of Gaseous Hydrogen Peroxide: A Step Forward to Online Monitoring of Food-Package Sterilization Processes}, series = {Phys. Status Solidi A}, volume = {215}, journal = {Phys. Status Solidi A}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, doi = {10.1002/pssa.201800044}, pages = {Artikel 1800044}, year = {2018}, abstract = {In this study, flexible calorimetric gas sensors are developed for specificdetection of gaseous hydrogen peroxide (H₂O₂) over a wide concentrationrange, which is used in sterilization processes for aseptic packaging industry.The flexibility of these sensors is an advantage for identifying the chemical components of the sterilant on the corners of the food boxes, so-called "coldspots", as critical locations in aseptic packaging, which are of great importance. These sensors are fabricated on flexible polyimide films by means of thin-film technique. Thin layers of titanium and platinum have been deposited on polyimide to define the conductive structures of the sensors. To detect the high-temperature evaporated H₂O₂, a differential temperature set-up is proposed. The sensors are evaluated in a laboratory-scaled sterilizationsystem to simulate the sterilization process. The concentration range of the evaporated H₂O₂ from 0 to 7.7\% v/v was defined and the sensors have successfully detected high as well as low H₂O₂ concentrations with a sensitivity of 5.04 °C/\% v/v. The characterizations of the sensors confirm their precise fabrication, high sensitivity and the novelty of low H₂O₂ concentration detections for future inline monitoring of food-package sterilization.}, language = {en} } @article{MiyamotoSekiSutoetal.2018, author = {Miyamoto, Koichiro and Seki, Kosuke and Suto, Takeyuki and Werner, Frederik and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Improved spatial resolution of the chemical imaging sensor with a hybrid illumination that suppresses lateral diffusion of photocarriers}, series = {Sensor and Actuators B: Chemical}, volume = {273}, journal = {Sensor and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2018.07.016}, pages = {1328 -- 1333}, year = {2018}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor capable of visualizing pH and ion distributions. The spatial resolution depends on the lateral diffusion of photocarriers generated by illumination of the semiconductor substrate. In this study, two types of optical setups, one based on a bundle of optical fibers and the other based on a binocular tube head, were developed to project a hybrid illumination of a modulated light beam and a ring-shaped constant illumination onto the sensor plate. An improved spatial resolution was realized by the ring-shaped constant illumination, which suppressed lateral diffusion of photocarriers by enhanced recombination due to the increased carrier concentration.}, language = {en} } @book{SchoeningPoghossian2018, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {Label-free biosensing: advanced materials, devices and applications}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-75219-8}, pages = {xii, 480 Seiten ; Illustrationen, Diagramme}, year = {2018}, language = {en} } @incollection{SchoeningWagnerPoghossianetal.2018, author = {Sch{\"o}ning, Michael Josef and Wagner, Torsten and Poghossian, Arshak and Miyamoto, K.I. and Werner, C.F. and Krause, S. and Yoshinobu, T.}, title = {Light-addressable potentiometric sensors for (bio-)chemical sensing and imaging}, series = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, booktitle = {Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Vol. 7}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {9780128097397}, pages = {295 -- 308}, year = {2018}, language = {en} } @article{DantismRoehlenWagneretal.2018, author = {Dantism, Shahriar and R{\"o}hlen, Desiree and Wagner, Torsten and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Optimization of Cell-Based Multi-Chamber LAPS Measurements Utilizing FPGA-Controlled Laser-Diode Modules}, series = {physica status solidi a : applications and materials sciences}, volume = {215}, journal = {physica status solidi a : applications and materials sciences}, number = {15}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201800058}, pages = {Article number 1800058}, year = {2018}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based potentiometric device, which detects concentration changes of an analyte solution on the sensor surface in a spatially resolved way. It uses a light source to generate electron-hole pairs inside the semiconductor, which are separated in the depletion region due to an applied bias voltage across the sensor structure and hence, a surface-potential-dependent photocurrent can be read out. However, depending on the beam angle of the light source, scattering effects can occur, which influence the recorded signal in LAPS-based differential measurements. To solve this problem, a novel illumination unit based on a field programmable gate array (FPGA) consisting of 16 small-sized tunable infrared laser-diode modules (LDMs) is developed. Due to the improved focus of the LDMs with a beam angle of only 2 mrad, undesirable scattering effects are minimized. Escherichia coli (E. coli) K12 bacteria are used as a test microorganism to study the extracellular acidification on the sensor surface. Furthermore, a salt bridge chamber is built up and integrated with the LAPS system enabling multi-chamber differential measurements with a single Ag/AgCl reference electrode.}, language = {en} }