@article{ChristenBarteltKowalski2010, author = {Christen, Marc and Bartelt, Perry and Kowalski, Julia}, title = {Back calculation of the In den Arelen avalanche with RAMMS: Interpretation of model results}, series = {Annals of Glaciology}, volume = {51}, journal = {Annals of Glaciology}, number = {54}, publisher = {Cambridge University Press}, address = {Cambridge}, isbn = {1727-5644}, doi = {10.3189/172756410791386553}, pages = {161 -- 168}, year = {2010}, abstract = {Two- and three-dimensional avalanche dynamics models are being increasingly used in hazard-mitigation studies. These models can provide improved and more accurate results for hazard mapping than the simple one-dimensional models presently used in practice. However, two- and three-dimensional models generate an extensive amount of output data, making the interpretation of simulation results more difficult. To perform a simulation in three-dimensional terrain, numerical models require a digital elevation model, specification of avalanche release areas (spatial extent and volume), selection of solution methods, finding an adequate calculation resolution and, finally, the choice of friction parameters. In this paper, the importance and difficulty of correctly setting up and analysing the results of a numerical avalanche dynamics simulation is discussed. We apply the two-dimensional simulation program RAMMS to the 1968 extreme avalanche event In den Arelen. We show the effect of model input variations on simulation results and the dangers and complexities in their interpretation.}, language = {en} } @article{BlomePriester1991, author = {Blome, Hans-Joachim and Priester, W.}, title = {Big Bounce in the very early Universe}, series = {Astronomy and Astrophysics. 250 (1991), H. 1}, journal = {Astronomy and Astrophysics. 250 (1991), H. 1}, isbn = {0004-6361}, pages = {43 -- 49}, year = {1991}, language = {en} } @article{ThomessenThomaBraun2023, author = {Thomessen, Karolin and Thoma, Andreas and Braun, Carsten}, title = {Bio-inspired altitude changing extension to the 3DVFH* local obstacle avoidance algorithm}, series = {CEAS Aeronautical Journal}, journal = {CEAS Aeronautical Journal}, publisher = {Springer}, address = {Wien}, issn = {1869-5590 (Online)}, doi = {10.1007/s13272-023-00691-w}, pages = {11 Seiten}, year = {2023}, abstract = {Obstacle avoidance is critical for unmanned aerial vehicles (UAVs) operating autonomously. Obstacle avoidance algorithms either rely on global environment data or local sensor data. Local path planners react to unforeseen objects and plan purely on local sensor information. Similarly, animals need to find feasible paths based on local information about their surroundings. Therefore, their behavior is a valuable source of inspiration for path planning. Bumblebees tend to fly vertically over far-away obstacles and horizontally around close ones, implying two zones for different flight strategies depending on the distance to obstacles. This work enhances the local path planner 3DVFH* with this bio-inspired strategy. The algorithm alters the goal-driven function of the 3DVFH* to climb-preferring if obstacles are far away. Prior experiments with bumblebees led to two definitions of flight zone limits depending on the distance to obstacles, leading to two algorithm variants. Both variants reduce the probability of not reaching the goal of a 3DVFH* implementation in Matlab/Simulink. The best variant, 3DVFH*b-b, reduces this probability from 70.7 to 18.6\% in city-like worlds using a strong vertical evasion strategy. Energy consumption is higher, and flight paths are longer compared to the algorithm version with pronounced horizontal evasion tendency. A parameter study analyzes the effect of different weighting factors in the cost function. The best parameter combination shows a failure probability of 6.9\% in city-like worlds and reduces energy consumption by 28\%. Our findings demonstrate the potential of bio-inspired approaches for improving the performance of local path planning algorithms for UAV.}, language = {en} } @misc{EickmannEschFunkeetal.2014, author = {Eickmann, Matthias and Esch, Thomas and Funke, Harald and Abanteriba, Sylvester and Roosen, Petra}, title = {Biofuels in Aviation - Safety Implications of Bio-Ethanol Usage in General Aviation Aircraft}, year = {2014}, abstract = {Up in the clouds and above fuels and construction materials must be very carefully selected to ensure a smooth flight and touchdown. Out of around 38,000 single and dual-engined propeller aeroplanes, roughly a third are affected by a new trend in the fuel sector that may lead to operating troubles or even emergency landings: The admixture of bio-ethanol to conventional gasoline. Experiences with these fuels may be projected to alternative mixtures containing new components.}, language = {en} } @article{EschFunkeRoosenetal.2011, author = {Esch, Thomas and Funke, Harald and Roosen, Peter and Jarolimek, Ulrich}, title = {Biogenic Vehicle Fuels in General Aviation Aircrafts}, series = {MTZ worldwide. 72 (2011), H. 1}, journal = {MTZ worldwide. 72 (2011), H. 1}, publisher = {Springer Automotive Media}, address = {Wiesbaden}, pages = {38 -- 43}, year = {2011}, language = {en} } @book{HavermannSeiler2004, author = {Havermann, Marc and Seiler, Friedrich}, title = {Boundary layer influence on supersonic jet cross flow interaction in hypersonic flow : DGLR/STAB-Fachsymposium Str{\"o}mungsmechanik 2004, Bremer Innovations- und Technologiezentrum (BITZ), Bremen, FRG, 16. - 18. November 2004 / Havermann, M.; Seiler, F. Institut Franco-Allemand de Recherches de Saint-Louis}, publisher = {ISL}, address = {Saint-Louis}, pages = {8 S. : Ill., graph. Darst.}, year = {2004}, language = {en} } @article{HavermannSeiler2006, author = {Havermann, Marc and Seiler, F.}, title = {Boundary Layer Influence on Supersonic Jet/Cross-Flow Interaction in Hypersonic Flow / Havermann, M. ; Seiler, F.}, series = {Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 92 (2006)}, journal = {Notes on Numerical Fluid Mechanics and Multidisciplinary Design. 92 (2006)}, publisher = {-}, isbn = {1612-2909}, pages = {281 -- 288}, year = {2006}, language = {en} } @article{GerhardtKrueger1997, author = {Gerhardt, Hans Joachim and Kr{\"u}ger, O.}, title = {Building shape influence on local wind loads}, series = {Proceedings of the 2nd European \& African Conference on Wind Engineering : 2 EACWE, Palazzo Ducale, Genova, Italy, June 22-26, 1997 / ed. by Giovanni Solari. - Vol. 2}, journal = {Proceedings of the 2nd European \& African Conference on Wind Engineering : 2 EACWE, Palazzo Ducale, Genova, Italy, June 22-26, 1997 / ed. by Giovanni Solari. - Vol. 2}, publisher = {Servizi Grafici Editoriali}, address = {Padova}, isbn = {88-86281-19-6}, pages = {XIX, S. 1017 - 1998 : Ill., graph. Darst.}, year = {1997}, language = {en} } @inproceedings{ChristenBarteltKowalskietal.2008, author = {Christen, Marc and Bartelt, Perry and Kowalski, Julia and Stoffel, Lukus}, title = {Calculation of dense snow avalanches in three-dimensional terrain with the numerical simulation programm RAMMS}, series = {Proceedings ISSW 2008 ; International Snow Science Workshop. Whistler 2008}, booktitle = {Proceedings ISSW 2008 ; International Snow Science Workshop. Whistler 2008}, pages = {709 -- 716}, year = {2008}, abstract = {Numerical models have become an essential part of snow avalanche engineering. Recent advances in understanding the rheology of flowing snow and the mechanics of entrainment and deposition have made numerical models more reliable. Coupled with field observations and historical records, they are especially helpful in understanding avalanche flow in complex terrain. However, the application of numerical models poses several new challenges to avalanche engineers. A detailed understanding of the avalanche phenomena is required to specify initial conditions (release zone dimensions and snowcover entrainment rates) as well as the friction parameters, which are no longer based on empirical back-calculations, rather terrain roughness, vegetation and snow properties. In this paper we discuss these problems by presenting the computer model RAMMS, which was specially designed by the SLF as a practical tool for avalanche engineers. RAMMS solves the depth-averaged equations governing avalanche flow with first and second-order numerical solution schemes. A tremendous effort has been invested in the implementation of advanced input and output features. Simulation results are therefore clearly and easily visualized to simplify their interpretation. More importantly, RAMMS has been applied to a series of well-documented avalanches to gauge model performance. In this paper we present the governing differential equations, highlight some of the input and output features of RAMMS and then discuss the simulation of the Gatschiefer avalanche that occurred in April 2008, near Klosters/Monbiel, Switzerland.}, language = {en} } @inproceedings{Wahle1983, author = {Wahle, Michael}, title = {Calculation of the response of heat exchanger tubes with regard to nonlinear and prestressing effects}, series = {Vibration in nuclear plant : proceedings of the 3rd International Conference on Vibration in Nuclear Plant held on 11 - 14 May 1982, Keswick ; vol. 1}, booktitle = {Vibration in nuclear plant : proceedings of the 3rd International Conference on Vibration in Nuclear Plant held on 11 - 14 May 1982, Keswick ; vol. 1}, publisher = {British Nuclear Energy Society}, address = {London}, isbn = {0-7277-0192-4 (Druckausg.)}, pages = {162 -- 183}, year = {1983}, language = {en} }