@inproceedings{LeichtScholtenSteuerDankertBouffier2016, author = {Leicht-Scholten, Carmen and Steuer-Dankert, Linda and Bouffier, Anna}, title = {Facing Future Challenges: Building Engineers for Tomorrow}, series = {Conference proceedings : new perspectives in science education : 5th Conference edition, Florence, Italy, 17-18 March 2016}, booktitle = {Conference proceedings : new perspectives in science education : 5th Conference edition, Florence, Italy, 17-18 March 2016}, isbn = {978-886292-705-5}, pages = {32 -- 37}, year = {2016}, abstract = {Future engineers are increasingly confronted with the so-called Megatrends which are the big social challenges society has to cope with. These Megatrends, such as "Silver Society", "Globalization", "Mobility" and "Female Shift" require an application-oriented perspective on Diversity especially in the engineering field. Therefore, it is necessary to enable future engineers not only to look at the technical perspectives of a problem, but also to be able to see the related questions within societies they are developing their artefacts for. The aim of teaching engineering should be to prepare engineers for these requirements and to draw attention to the diverse needs in a globalized world. Bringing together technical knowledge and social competences which go beyond a mere training of the so-called "soft skills", is a new approach followed at RWTH Aachen University, one of the leading technical universities in Germany. RWTH Aachen University has established the bridging professorship "Gender and Diversity in Engineering" (GDI) which educates engineers with an interdisciplinary approach to expand engineering limits. In the frame of a sustainable teaching concept the research group under the leadership of Prof. Carmen Leicht-Scholten has developed an approach which imparts a supplication-specific Gender and Diversity expertise to engineers. In workshops students gain theoretical knowledge about Gender and Diversity and learn how to transfer their knowledge in their special field of study and later work. To substantiate this, the course participants have to solve case studies from real life. The cases which are developed in collaboration with non-profit organizations and enterprises from economy rise the students to challenges which are inspired by professional life. Evaluation shows the success of this approach as well as an increasing demand for such teaching formats.}, language = {en} } @inproceedings{NiemuellerReuterFerrein2016, author = {Niemueller, Tim and Reuter, Sebastian and Ferrein, Alexander}, title = {Fawkes for the RoboCup Logistics League}, series = {RoboCup 2015: Robot World Cup XIX}, booktitle = {RoboCup 2015: Robot World Cup XIX}, editor = {Almeida, Luis}, publisher = {Springer International Publishing}, address = {Cham}, isbn = {978-3-319-29339-4}, doi = {10.1007/978-3-319-29339-4_31}, pages = {365 -- 373}, year = {2016}, language = {en} } @inproceedings{TranTranMatthiesetal.2016, author = {Tran, Ngoc Trinh and Tran, Thanh Ngoc and Matthies, Hermann G. and Stavroulakis, Georgios Eleftherios and Staat, Manfred}, title = {FEM Shakedown of uncertain structures by chance constrained programming}, series = {PAMM Proceedings in Applied Mathematics and Mechanics}, volume = {16}, booktitle = {PAMM Proceedings in Applied Mathematics and Mechanics}, number = {1}, issn = {1617-7061}, doi = {10.1002/pamm.201610346}, pages = {715 -- 716}, year = {2016}, language = {en} } @inproceedings{BhattaraiStaat2016, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Female pelvic floor dysfunction: progress weakening of the support system}, series = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, booktitle = {1st YRA MedTech Symposium 2016 : April 8th / 2016 / University of Duisburg-Essen}, editor = {Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, doi = {10.17185/duepublico/40821}, pages = {11 -- 12}, year = {2016}, abstract = {The structure of the female pelvic floor (PF) is an inter-related system of bony pelvis,muscles, pelvic organs, fascias, ligaments, and nerves with multiple functions. Mechanically, thepelvic organ support system are of two types: (I) supporting system of the levator ani (LA) muscle,and (II) the suspension system of the endopelvic fascia condensation [1], [2]. Significantdenervation injury to the pelvic musculature, depolimerization of the collagen fibrils of the softvaginal hammock, cervical ring and ligaments during pregnancy and vaginal delivery weakens thenormal functions of the pelvic floor. Pelvic organ prolapse, incontinence, sexual dysfunction aresome of the dysfunctions which increases progressively with age and menopause due toweakened support system according to the Integral theory [3]. An improved 3D finite elementmodel of the female pelvic floor as shown in Fig. 1 is constructed that: (I) considers the realisticsupport of the organs to the pelvic side walls, (II) employs the improvement of our previous FEmodel [4], [5] along with the patient based geometries, (III) incorporates the realistic anatomy andboundary conditions of the endopelvic (pubocervical and rectovaginal) fascia, and (IV) considersvarying stiffness of the endopelvic fascia in the craniocaudal direction [3]. Several computationsare carried out on the presented computational model with healthy and damaged supportingtissues, and comparisons are made to understand the physiopathology of the female PF disorders.}, language = {en} } @incollection{FeldmannDoeringPyschny2016, author = {Feldmann, M. and D{\"o}ring, Bernd and Pyschny, D.}, title = {Floor systems; Sustainabilty analyses and assessments of steel bridges}, series = {Sustainable steel buildings : a practical guide for structures and envelopes}, booktitle = {Sustainable steel buildings : a practical guide for structures and envelopes}, publisher = {Wiley Blackwell}, address = {Chichester, West Sussex}, isbn = {978-1-118-74079-8 (PDF)}, pages = {198 -- 223}, year = {2016}, language = {en} } @article{SchwabHojdisLacayoetal.2016, author = {Schwab, Lukas and Hojdis, Nils and Lacayo, Jorge and Wilhelm, Manfred}, title = {Fourier-Transform Rheology of Unvulcanized, Carbon Black Filled Styrene Butadiene Rubber}, series = {Macromolecular Materials and Engineering}, volume = {301}, journal = {Macromolecular Materials and Engineering}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-2054}, doi = {10.1002/mame.201500356}, pages = {457 -- 468}, year = {2016}, abstract = {Rubber materials filled with reinforcing fillers display nonlinear rheological behavior at small strain amplitudes below γ0 < 0.1. Nevertheless, rheological data are analyzed mostly in terms of linear parameters, such as shear moduli (G′, G″), which loose their physical meaning in the nonlinear regime. In this work styrene butadiene rubber filled with carbon black (CB) under large amplitude oscillatory shear (LAOS) is analyzed in terms of the nonlinear parameter I3/1. Three different CB grades are used and the filler load is varied between 0 and 70 phr. It is found that I3/1(φ) is most sensitive to changes of the total accessible filler surface area at low strain amplitudes (γ0 = 0.32). The addition of up to 70 phr CB leads to an increase of I3/1(φ) by a factor of more than ten. The influence of the measurement temperature on I3/1 is pronounced for CB levels above the percolation threshold.}, language = {en} } @inproceedings{Matcha2016, author = {Matcha, Heike}, title = {From Designing Buildings from Systems to Designing Systems for Buildings}, series = {Complexity \& Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1}, booktitle = {Complexity \& Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1}, editor = {Herneoja, Aulikki and {\"O}sterlund, Toni and Markkanen, Piia}, publisher = {ECAADe}, address = {Oulu, Finland}, doi = {10.52842/conf.ecaade.2016.1.237}, pages = {237 -- 240}, year = {2016}, abstract = {We study the novel possibilities computer aided design and production open up for the design of building systems. Such systems today can, via individualized mass production, consist of a larger number and more complex parts than previously and therefore be assembled into more complex wholes. This opens up the possibility of designing specialized systems specifically for single buildings. The common order of starting with a building system and designing a building using this system can be reversed to designing a building first and then developing a system specifically for that building. We present and discuss research that incorporates students design projects into research work and fosters links between research and teaching.}, language = {en} } @article{DallasSalphatiGomezZepedaetal.2016, author = {Dallas, Shannon and Salphati, Laurent and Gomez-Zepeda, David and Wanek, Thomas and Chen, Liangfu and Chu, Xiaoyan and Kunta, Jeevan and Mezler, Mario and Menet, Marie-Claude and Chasseigneaux, Stephanie and Decl{\`e}ves, Xavier and Langer, Oliver and Pierre, Esaie and DiLoreto, Karen and Hoft, Carolin and Laplanche, Loic and Pang, Jodie and Pereira, Tony and Andonian, Clara and Simic, Damir and Rode, Anja and Yabut, Jocelyn and Zhang, Xiaolin and Scheer, Nico}, title = {Generation and Characterization of a Breast Cancer Resistance Protein Humanized Mouse Model}, series = {Molecular Pharmacology}, volume = {89}, journal = {Molecular Pharmacology}, number = {5}, publisher = {ASPET}, address = {Bethesda, Md.}, issn = {1521-0111}, doi = {10.1124/mol.115.102079}, pages = {492 -- 504}, year = {2016}, abstract = {Breast cancer resistance protein (BCRP) is expressed in various tissues, such as the gut, liver, kidney and blood brain barrier (BBB), where it mediates the unidirectional transport of substrates to the apical/luminal side of polarized cells. Thereby BCRP acts as an efflux pump, mediating the elimination or restricting the entry of endogenous compounds or xenobiotics into tissues and it plays important roles in drug disposition, efficacy and safety. Bcrp knockout mice (Bcrp-/-) have been used widely to study the role of this transporter in limiting intestinal absorption and brain penetration of substrate compounds. Here we describe the first generation and characterization of a mouse line humanized for BCRP (hBCRP), in which the mouse coding sequence from the start to stop codon was replaced with the corresponding human genomic region, such that the human transporter is expressed under control of the murine Bcrp promoter. We demonstrate robust human and loss of mouse BCRP/Bcrp mRNA and protein expression in the hBCRP mice and the absence of major compensatory changes in the expression of other genes involved in drug metabolism and disposition. Pharmacokinetic and brain distribution studies with several BCRP probe substrates confirmed the functional activity of the human transporter in these mice. Furthermore, we provide practical examples for the use of hBCRP mice to study drug-drug interactions (DDIs). The hBCRP mouse is a promising model to study the in vivo role of human BCRP in limiting absorption and BBB penetration of substrate compounds and to investigate clinically relevant DDIs involving BCRP.}, language = {en} } @inproceedings{HallmannHeideckerSchlottereretal.2016, author = {Hallmann, Marcus and Heidecker, Ansgar and Schlotterer, Markus and Dachwald, Bernd}, title = {GTOC8: results and methods of team 15 DLR}, series = {26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA}, booktitle = {26th AAS/AIAA Space Flight Mechanics Meeting, Napa, CA}, year = {2016}, abstract = {This paper describes the results and methods used during the 8th Global Trajectory Optimization Competition (GTOC) of the DLR team. Trajectory optimization is crucial for most of the space missions and usually can be formulated as a global optimization problem. A lot of research has been done to different type of mission problems. The most demanding ones are low thrust transfers with e.g. gravity assist sequences. In that case the optimal control problem is combined with an integer problem. In most of the GTOCs we apply a filtering of the problem based on domain knowledge.}, language = {en} } @article{MuribYeapEurlingsetal.2016, author = {Murib, M. S. and Yeap, W. S. and Eurlings, Y. and Grinsven, B. van and Boyen, H.-G. and Conings, B. and Michiels, L. and Ameloot, M. and Carleer, R. and Warmer, J. and Kaul, P. and Haenen, K. and Sch{\"o}ning, Michael Josef and Ceuninck, W. de and Wagner, P.}, title = {Heat-transfer based characterization of DNA on synthetic sapphire chips}, series = {Sensors and Actuators B: Chemical}, volume = {230}, journal = {Sensors and Actuators B: Chemical}, number = {230}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.02.027}, pages = {260 -- 271}, year = {2016}, abstract = {In this study, we show that synthetic sapphire (Al₂O₃), an established implant material, can also serve as a platform material for biosensors comparable to nanocrystalline diamond. Sapphire chips, beads, and powder were first modified with (3-aminopropyl) triethoxysilane (APTES), followed by succinic anhydride (SA), and finally single-stranded probe DNA was EDC coupled to the functionalized layer. The presence of the APTES-SA layer on sapphire powders was confirmed by thermogravimetric analyis and Fourier-transform infrared spectroscopy. Using planar sapphire chips as substrates and X-ray photoelectron spectroscopy (XPS) as surface-sensitive tool, the sequence of individual layers was analyzed with respect to their chemical state, enabling the quantification of areal densities of the involved molecular units. Fluorescence microscopy was used to demonstrate the hybridization of fluorescently tagged target DNA to the probe DNA, including denaturation- and re-hybridization experiments. Due to its high thermal conductivity, synthetic sapphire is especially suitable as a chip material for the heat-transfer method, which was employed to distinguish complementary- and non-complementary DNA duplexes containing single-nucleotide polymorphisms. These results indicate that it is possible to detect mutations electronically with a chemically resilient and electrically insulating chip material.}, language = {en} }