@inproceedings{GoettenHavermannBraunetal.2018, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Gomez, Francisco and Bil, Cees}, title = {On the Applicability of Empirical Drag Estimation Methods for Unmanned Air Vehicle Design Read More: https://arc.aiaa.org/doi/10.2514/6.2018-3192}, series = {2018 Aviation Technology, Integration, and Operations Conference, AIAA AVIATION Forum}, booktitle = {2018 Aviation Technology, Integration, and Operations Conference, AIAA AVIATION Forum}, issn = {1533-385X}, doi = {10.2514/6.2018-3192}, pages = {Article 3192}, year = {2018}, language = {en} } @inproceedings{MoehrenBergmannJanseretal.2023, author = {M{\"o}hren, Felix and Bergmann, Ole and Janser, Frank and Braun, Carsten}, title = {On the determination of harmonic propeller loads}, series = {AIAA SCITECH 2023 Forum}, booktitle = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, doi = {10.2514/6.2023-2404}, pages = {12 Seiten}, year = {2023}, abstract = {Dynamic loads significantly impact the structural design of propeller blades due to fatigue and static strength. Since propellers are elastic structures, deformations and aerodynamic loads are coupled. In the past, propeller manufacturers established procedures to determine unsteady aerodynamic loads and the structural response with analytical steady-state calculations. According to the approach, aeroelastic coupling primarily consists of torsional deformations. They neglect bending deformations, deformation velocities, and inertia terms. This paper validates the assumptions above for a General Aviation propeller and a lift propeller for urban air mobility or large cargo drones. Fully coupled reduced-order simulations determine the dynamic loads in the time domain. A quasi-steady blade element momentum approach transfers loads to one-dimensional finite beam elements. The simulation results are in relatively good agreement with the analytical method for the General Aviation propeller but show increasing errors for the slender lift propeller. The analytical approach is modified to consider the induced velocities. Still, inertia and velocity proportional terms play a significant role for the lift propeller due to increased elasticity. The assumption that only torsional deformations significantly impact the dynamic loads of propellers is not valid. Adequate determination of dynamic loads of such designs requires coupled aeroelastic simulations or advanced analytical procedures.}, language = {en} } @inproceedings{BaaderKellerLehmannetal.2019, author = {Baader, Fabian and Keller, Denis and Lehmann, Raphael and Gerber, Lukas and Reiswich, Martin and Dachwald, Bernd and F{\"o}rstner, Roger}, title = {Operating melting probes for ice penetration under sublimation conditions and in reduced gravity on a sounding rocket}, series = {Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research}, booktitle = {Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research}, issn = {0379-6566}, pages = {8 Seiten}, year = {2019}, language = {en} } @inproceedings{NeuJanserKhatibietal.2015, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Operational modal analysis of a cantilever in a wind tunnel using optical fiber bragg grating sensors}, series = {6th International Operational Modal Analysis Conference. IOMACĀ“15. 2015 May 12-14 Gijon - Spain}, booktitle = {6th International Operational Modal Analysis Conference. IOMACĀ“15. 2015 May 12-14 Gijon - Spain}, doi = {10.13140/RG.2.1.3753.0324}, pages = {10 S.}, year = {2015}, language = {en} } @inproceedings{DachwaldMengaliQuartaetal.2007, author = {Dachwald, Bernd and Mengali, Giovanni and Quarta, Alessandro A and Macdonald, Malcolm and McInnes, Colin R}, title = {Optical solar sail degradation modelling}, series = {1st International Symposium on Solar Sailing}, booktitle = {1st International Symposium on Solar Sailing}, pages = {1 -- 27}, year = {2007}, abstract = {We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails.}, language = {en} } @inproceedings{Wahle1987, author = {Wahle, Michael}, title = {Optimale Auslegung von Schwingungsd{\"a}mpfern zur Schwingungsberuhigung elastischer Strukturen}, series = {D{\"a}mpfung von Schwingungen bei Maschinen und Bauwerken : Tagung N{\"u}rnberg, 9. u. 10. April 1987. - (VDI-Berichte ; 627)}, booktitle = {D{\"a}mpfung von Schwingungen bei Maschinen und Bauwerken : Tagung N{\"u}rnberg, 9. u. 10. April 1987. - (VDI-Berichte ; 627)}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {3-18-090627-8}, pages = {355 -- 373}, year = {1987}, language = {de} } @inproceedings{SchoutetensDachwaldHeiligers2021, author = {Schoutetens, Frederic and Dachwald, Bernd and Heiligers, Jeannette}, title = {Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol}, series = {8th ICATT 2021}, booktitle = {8th ICATT 2021}, pages = {1 -- 15}, year = {2021}, abstract = {With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission's scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30\% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system.}, language = {en} } @inproceedings{MathiakPlescherWillnecker2003, author = {Mathiak, Gerhard and Plescher, Engelbert and Willnecker, Rainer}, title = {Parabolic flight experiments about vibrational effects on diffusion experiments}, series = {54th International Astronautical Congress of the International Astronautical Federation (IAF) : Bremen, 29 Sept. 2003 through 3 Oct. 2003 ; vol. 1}, booktitle = {54th International Astronautical Congress of the International Astronautical Federation (IAF) : Bremen, 29 Sept. 2003 through 3 Oct. 2003 ; vol. 1}, organization = {International Astronautical Congress of the International Astronautical Federation <54, 2003, Bremen>}, pages = {4389 -- 4396}, year = {2003}, language = {de} } @inproceedings{DachwaldSeboldtHaeusler2002, author = {Dachwald, Bernd and Seboldt, Wolfgang and H{\"a}usler, Bernd}, title = {Performance requirements for near-term interplanetary solar sailcraft missions}, series = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, booktitle = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, pages = {9 Seiten}, year = {2002}, abstract = {Solar sailcraft provide a wide range of opportunities for high-energy low-cost missions. To date, most mission studies require a rather demanding performance that will not be realized by solar sailcraft of the first generation. However, even with solar sailcraft of moderate performance, scientifically relevant missions are feasible. This is demonstrated with a Near Earth Asteroid sample return mission and various planetary rendezvous missions.}, language = {en} } @inproceedings{SchartnerLoebDachwaldetal.2009, author = {Schartner, Karl-Heinz and Loeb, H. W. and Dachwald, Bernd and Ohndorf, Andreas}, title = {Perspectives of electric propulsion for outer planetary and deep space missions}, series = {European Planetary Science Congress 2009}, booktitle = {European Planetary Science Congress 2009}, pages = {416 -- 416}, year = {2009}, abstract = {Solar-electric propulsion (SEP) is superior with respect to payload capacity, flight time and flexible launch window to the conventional interplanetary transfer method using chemical propulsion combined with gravity assists. This fact results from the large exhaust velocities of electric low-thrust propulsion and is favourable also for missions to the giant planets, Kuiper-belt objects and even for a heliopause probe (IHP) as shown in three studies by the authors funded by DLR. They dealt with a lander for Europa and a sample return mission from a mainbelt asteroid [1], with the TANDEM mission [2]; the third recent one investigates electric propulsion for the transfer to the edge of the solar system. All studies are based on triple-junction solar arrays, on rf-ion thrusters of the qualified RIT-22 type and they use the intelligent trajectory optimization program InTrance [3].}, language = {en} }