@article{SchneiderSchneiderKinderetal.2017, author = {Schneider, Wilhelm and Schneider, Bettina and Kinder, Stephanie and Meinhardt, Kerstin}, title = {Grundbegriffe der Abgabenordnung}, series = {Das Wirtschaftsstudium : wisu ; Zeitschrift f{\"u}r Ausbildung, Examen, Berufseinstieg und Fortbildung}, volume = {46}, journal = {Das Wirtschaftsstudium : wisu ; Zeitschrift f{\"u}r Ausbildung, Examen, Berufseinstieg und Fortbildung}, number = {5}, publisher = {Lange}, address = {D{\"u}sseldorf}, issn = {0340-3084}, pages = {575 -- 581}, year = {2017}, language = {de} } @article{NeuJanserKhatibietal.2017, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {Fully Automated Operational Modal Analysis using multi-stage clustering}, series = {Mechanical Systems and Signal Processing}, volume = {Vol. 84, Part A}, journal = {Mechanical Systems and Signal Processing}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0888-3270}, doi = {10.1016/j.ymssp.2016.07.031}, pages = {308 -- 323}, year = {2017}, language = {en} } @article{BarnatBosseMergner2017, author = {Barnat, Miriam and Bosse, Elke and Mergner, Julia}, title = {Forschungsbasierte Qualit{\"a}tsentwicklung f{\"u}r die Studieneingangsphase}, series = {Zeitschrift f{\"u}r Hochschulentwicklung (ZFHE)}, volume = {12}, journal = {Zeitschrift f{\"u}r Hochschulentwicklung (ZFHE)}, number = {3}, issn = {2219-6994}, doi = {10.3217/zfhe-12-03/05}, pages = {71 -- 91}, year = {2017}, language = {de} } @article{JildehKirchnerOberlaenderetal.2017, author = {Jildeh, Zaid B. and Kirchner, Patrick and Oberl{\"a}nder, Jan and Kremers, Alexander and Wagner, Torsten and Wagner, Patrick H. and Sch{\"o}ning, Michael Josef}, title = {FEM-based modeling of a calorimetric gas sensor for hydrogen peroxide monitoring}, series = {physica status solidi a : applications and materials sciences}, journal = {physica status solidi a : applications and materials sciences}, number = {Early View}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201600912}, year = {2017}, abstract = {A physically coupled finite element method (FEM) model is developed to study the response behavior of a calorimetric gas sensor. The modeled sensor serves as a monitoring device of the concentration of gaseous hydrogen peroxide (H2 O2) in a high temperature mixture stream in aseptic sterilization processes. The principle of operation of a calorimetric H2 O2 sensor is analyzed and the results of the numerical model have been validated by using previously published sensor experiments. The deviation in the results between the FEM model and experimental data are presented and discussed.}, language = {en} } @article{KilicRaatschenKoerfgenetal.2017, author = {Kilic, S. A. and Raatschen, Hans-J{\"u}rgen and K{\"o}rfgen, B. and Apaydin, N. M. and Astaneh-Asl, A.}, title = {FE Model of the Fatih Sultan Mehmet Suspension Bridge Using Thin Shell Finite Elements}, series = {Arabian Journal for Science and Engineering}, volume = {42}, journal = {Arabian Journal for Science and Engineering}, number = {3}, publisher = {Springer Nature}, issn = {2191-4281}, doi = {10.1007/s13369-016-2316-y}, pages = {1103 -- 1116}, year = {2017}, abstract = {This paper presents the results of an eigenvalue analysis of the Fatih Sultan Mehmet Bridge. A high-resolution finite element model was created directly from the available design documents. All physical properties of the structural components were included in detail, so no calibration to the measured data was necessary. The deck and towers were modeled with shell elements. A nonlinear static analysis was performed before the eigenvalue calculation. The calculated natural frequencies and corresponding mode shapes showed good agreement with the available measured ambient vibration data. The calculation of the effective modal mass showed that nine modes had single contributions higher than 5 \% of the total mass. They were in a frequency range up to 1.2 Hz. The comparison of the results for the torsional modes especially demonstrated the advantage of using thin shell finite elements over the beam modeling approach.}, language = {en} } @article{Hebel2017, author = {Hebel, Christoph}, title = {Erfahrungen mit der RIN und aktuelle Weiterentwicklungen}, series = {Straßenverkehrstechnik: Organ der Forschungsgesellschaft f{\"u}r Straßen- und Verkehrswesen, der Bundesvereinigung der Straßenbau- und Verkehrsingenieure und der {\"O}sterreichischen Forschungsgesellschaft Straße und Verkehr; Zeitschrift f{\"u}r Verkehrsplanung, Verkehrsmanagement, Verkehrssicherheit, Verkehrstechnik}, volume = {61}, journal = {Straßenverkehrstechnik: Organ der Forschungsgesellschaft f{\"u}r Straßen- und Verkehrswesen, der Bundesvereinigung der Straßenbau- und Verkehrsingenieure und der {\"O}sterreichischen Forschungsgesellschaft Straße und Verkehr; Zeitschrift f{\"u}r Verkehrsplanung, Verkehrsmanagement, Verkehrssicherheit, Verkehrstechnik}, number = {7}, publisher = {Kirschbaum-Verlag}, address = {Bonn}, issn = {0039-2219}, pages = {443 -- 448}, year = {2017}, language = {de} } @article{KatzPoghossianSchoening2017, author = {Katz, Evgeny and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics}, series = {Analytical and Bioanalytical Chemistry}, volume = {409}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-016-0079-7}, pages = {81 -- 94}, year = {2017}, abstract = {The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion.}, language = {en} } @article{KerpenBungValeroetal.2017, author = {Kerpen, Nils B. and Bung, Daniel B. and Valero, Daniel and Schlurmann, Torsten}, title = {Energy dissipation within the wave run-up at stepped revetments}, series = {Journal of Ocean University of China}, volume = {16}, journal = {Journal of Ocean University of China}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1993-5021}, doi = {10.1007/s11802-017-3355-z}, pages = {649 -- 654}, year = {2017}, language = {en} } @article{AlbannaLuekeSjapicetal.2017, author = {Albanna, Walid and Lueke, Jan Niklas and Sjapic, Volha and Kotliar, Konstantin and Hescheler, J{\"u}rgen and Clusmann, Hans and Sjapic, Sergej and Alpdogan, Serdan and Schneider, Toni and Schubert, Gerrit Alexander and Neumaier, Felix}, title = {Electroretinographic Assessment of Inner Retinal Signaling in the Isolated and Superfused Murine Retina}, series = {Current Eye Research}, journal = {Current Eye Research}, number = {Article in press}, publisher = {Taylor \& Francis}, address = {London}, issn = {1460-2202}, doi = {10.1080/02713683.2017.1339807}, pages = {1 -- 9}, year = {2017}, language = {en} } @article{HonarvarfardGamellaChannaveerappaetal.2017, author = {Honarvarfard, Elham and Gamella, Maria and Channaveerappa, Devika and Darie, Costel C. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {Electrochemically Stimulated Insulin Release from a Modified Graphene-functionalized Carbon Fiber Electrode}, series = {Electroanalysis}, volume = {29}, journal = {Electroanalysis}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109}, doi = {10.1002/elan.201700095}, pages = {1543 -- 1553}, year = {2017}, abstract = {A graphene-functionalized carbon fiber electrode was modified with adsorbed polyethylenimine to introduce amino functionalities and then with trigonelline and 4-carboxyphenylboronic acid covalently bound to the amino groups. The trigonelline species containing quarterized pyridine groups produced positive charge on the electrode surface regardless of the pH value, while the phenylboronic acid species were neutral below pH 8 and negatively charged above pH 9 (note that their pKa=8.4). The total charge on the monolayer-modified electrode was positive at the neutral pH and negative at pH > 9. Note that 4-carboxyphenylboronic acid was attached to the electrode surface in molar excess to trigonelline, thus allowing the negative charge to dominate on the electrode surface at basic pH. Negatively charged fluorescent dye-labeled insulin (insulin-FITC) was loaded on the modified electrode surface at pH 7.0 due to its electrostatic attraction to the positively charged interface. The local pH in close vicinity to the electrode surface was increased to ca. 9-10 due to consumption of H+ ions upon electrochemical reduction of oxygen proceeding at the potential of -1.0 V (vs. Ag/AgCl) applied on the modified electrode. The process resulted in recharging of the electrode surface to the negative value due to the formation of the negative charge on the phenylboronic acid groups, thus resulting in the electrostatic repulsion of insulin-FITC and stimulating its release from the electrode surface. The insulin release was characterized by fluorescence spectroscopy (using the FITC-labeled insulin), by electrochemical measurements on an iridium oxide, IrOx, electrode and by mass spectrometry. The graphene-functionalized carbon fiber electrode demonstrated significant advantages in the signal-stimulated insulin release comparing with the carbon fiber electrode without the graphene species.}, language = {en} }