@incollection{StengerAltherrMuelleretal.2018, author = {Stenger, David and Altherr, Lena and M{\"u}ller, Tankred and Pelz, Peter F.}, title = {Product family design optimization using model-based engineering techniques}, series = {Operations Research Proceedings 2017}, booktitle = {Operations Research Proceedings 2017}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-89919-0}, doi = {10.1007/978-3-319-89920-6_66}, pages = {495 -- 502}, year = {2018}, abstract = {Highly competitive markets paired with tremendous production volumes demand particularly cost efficient products. The usage of common parts and modules across product families can potentially reduce production costs. Yet, increasing commonality typically results in overdesign of individual products. Multi domain virtual prototyping enables designers to evaluate costs and technical feasibility of different single product designs at reasonable computational effort in early design phases. However, savings by platform commonality are hard to quantify and require detailed knowledge of e.g. the production process and the supply chain. Therefore, we present and evaluate a multi-objective metamodel-based optimization algorithm which enables designers to explore the trade-off between high commonality and cost optimal design of single products.}, language = {en} } @inproceedings{LeiseAltherr2018, author = {Leise, Philipp and Altherr, Lena}, title = {Optimizing the design and control of decentralized water supply systems - a case-study of a hotel building}, series = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, booktitle = {EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-97773-7}, doi = {10.1007/978-3-319-97773-7_107}, pages = {1241 -- 1252}, year = {2018}, abstract = {To increase pressure to supply all floors of high buildings with water, booster stations, normally consisting of several parallel pumps in the basement, are used. In this work, we demonstrate the potential of a decentralized pump topology regarding energy savings in water supply systems of skyscrapers. We present an approach, based on Mixed-Integer Nonlinear Programming, that allows to choose an optimal network topology and optimal pumps from a predefined construction kit comprising different pump types. Using domain-specific scaling laws and Latin Hypercube Sampling, we generate different input sets of pump types and compare their impact on the efficiency and cost of the total system design. As a realistic application example, we consider a hotel building with 325 rooms, 12 floors and up to four pressure zones.}, language = {en} } @incollection{MuellerAltherrAholaetal.2018, author = {M{\"u}ller, Tim M. and Altherr, Lena and Ahola, Marja and Schabel, Samuel and Pelz, Peter F.}, title = {Optimizing pressure screen systems in paper recycling: optimal system layout, component selection and operation}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-18499-5}, doi = {10.1007/978-3-030-18500-8_44}, pages = {355 -- 361}, year = {2018}, abstract = {Around 60\% of the paper worldwide is made from recovered paper. Especially adhesive contaminants, so called stickies, reduce paper quality. To remove stickies but at the same time keep as many valuable fibers as possible, multi-stage screening systems with several interconnected pressure screens are used. When planning such systems, suitable screens have to be selected and their interconnection as well as operational parameters have to be defined considering multiple conflicting objectives. In this contribution, we present a Mixed-Integer Nonlinear Program to optimize system layout, component selection and operation to find a suitable trade-off between output quality and yield.}, language = {en} } @inproceedings{MuellerAltherrLeiseetal.2020, author = {M{\"u}ller, Tim M. and Altherr, Lena and Leise, Philipp and Pelz, Peter F.}, title = {Optimization of pumping systems for buildings: Experimental validation of different degrees of model detail on a modular test rig}, series = {Operations Research Proceedings 2019}, booktitle = {Operations Research Proceedings 2019}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-48438-5}, doi = {10.1007/978-3-030-48439-2_58}, pages = {481 -- 488}, year = {2020}, abstract = {Successful optimization requires an appropriate model of the system under consideration. When selecting a suitable level of detail, one has to consider solution quality as well as the computational and implementation effort. In this paper, we present a MINLP for a pumping system for the drinking water supply of high-rise buildings. We investigate the influence of the granularity of the underlying physical models on the solution quality. Therefore, we model the system with a varying level of detail regarding the friction losses, and conduct an experimental validation of our model on a modular test rig. Furthermore, we investigate the computational effort and show that it can be reduced by the integration of domain-specific knowledge.}, language = {en} } @article{MuellerLeiseLorenzetal.2020, author = {M{\"u}ller, Tim M. and Leise, Philipp and Lorenz, Imke-Sophie and Altherr, Lena and Pelz, Peter F.}, title = {Optimization and validation of pumping system design and operation for water supply in high-rise buildings}, series = {Optimization and Engineering}, volume = {2021}, journal = {Optimization and Engineering}, number = {22}, publisher = {Springer}, issn = {1573-2924}, doi = {10.1007/s11081-020-09553-4}, pages = {643 -- 686}, year = {2020}, abstract = {The application of mathematical optimization methods for water supply system design and operation provides the capacity to increase the energy efficiency and to lower the investment costs considerably. We present a system approach for the optimal design and operation of pumping systems in real-world high-rise buildings that is based on the usage of mixed-integer nonlinear and mixed-integer linear modeling approaches. In addition, we consider different booster station topologies, i.e. parallel and series-parallel central booster stations as well as decentral booster stations. To confirm the validity of the underlying optimization models with real-world system behavior, we additionally present validation results based on experiments conducted on a modularly constructed pumping test rig. Within the models we consider layout and control decisions for different load scenarios, leading to a Deterministic Equivalent of a two-stage stochastic optimization program. We use a piecewise linearization as well as a piecewise relaxation of the pumps' characteristics to derive mixed-integer linear models. Besides the solution with off-the-shelf solvers, we present a problem specific exact solving algorithm to improve the computation time. Focusing on the efficient exploration of the solution space, we divide the problem into smaller subproblems, which partly can be cut off in the solution process. Furthermore, we discuss the performance and applicability of the solution approaches for real buildings and analyze the technical aspects of the solutions from an engineer's point of view, keeping in mind the economically important trade-off between investment and operation costs.}, language = {en} } @inproceedings{AltherrPelzEdereretal.2017, author = {Altherr, Lena and Pelz, Peter F. and Ederer, Thorsten and Pfetsch, Marc E.}, title = {Optimale Getriebe auf Knopfdruck: Gemischt-ganzzahlige nichtlineare Optimierung zur Entscheidungsunterst{\"u}tzung bei der Auslegung von Getrieben f{\"u}r Kraftfahrzeuge}, series = {Antriebstechnisches Kolloquium ATK 2017}, booktitle = {Antriebstechnisches Kolloquium ATK 2017}, editor = {Jacobs, Georg}, isbn = {9783743148970}, pages = {313 -- 325}, year = {2017}, language = {de} } @incollection{AltherrLeisePfetschetal.2021, author = {Altherr, Lena and Leise, Philipp and Pfetsch, Marc E. and Schmitt, Andreas}, title = {Optimal design of resilient technical systems on the example of water supply systems}, series = {Mastering Uncertainty in Mechanical Engineering}, booktitle = {Mastering Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-78356-3}, pages = {429 -- 433}, year = {2021}, language = {en} } @article{SunAltherrPeietal.2018, author = {Sun, Hui and Altherr, Lena and Pei, Ji and Pelz, Peter F. and Yuan, Shouqi}, title = {Optimal booster station design and operation under uncertain load}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.102}, pages = {102 -- 115}, year = {2018}, abstract = {Given industrial applications, the costs for the operation and maintenance of a pump system typically far exceed its purchase price. For finding an optimal pump configuration which minimizes not only investment, but life-cycle costs, methods like Technical Operations Research which is based on Mixed-Integer Programming can be applied. However, during the planning phase, the designer is often faced with uncertain input data, e.g. future load demands can only be estimated. In this work, we deal with this uncertainty by developing a chance-constrained two-stage (CCTS) stochastic program. The design and operation of a booster station working under uncertain load demand are optimized to minimize total cost including purchase price, operation cost incurred by energy consumption and penalty cost resulting from water shortage. We find optimized system layouts using a sample average approximation (SAA) algorithm, and analyze the results for different risk levels of water shortage. By adjusting the risk level, the costs and performance range of the system can be balanced, and thus the system's resilience can be engineered}, language = {en} } @article{AltherrJoggerstLeiseetal.2018, author = {Altherr, Lena and Joggerst, Laura and Leise, Philipp and Pfetsch, Marc E. and Schmitt, Andreas and Wendt, Janine}, title = {On obligations in the development process of resilient systems with algorithmic design methods}, series = {Applied Mechanics and Materials}, volume = {885}, journal = {Applied Mechanics and Materials}, number = {885}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, isbn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.885.240}, pages = {240 -- 252}, year = {2018}, abstract = {Advanced computational methods are needed both for the design of large systems and to compute high accuracy solutions. Such methods are efficient in computation, but the validation of results is very complex, and highly skilled auditors are needed to verify them. We investigate legal questions concerning obligations in the development phase, especially for technical systems developed using advanced methods. In particular, we consider methods of resilient and robust optimization. With these techniques, high performance solutions can be found, despite a high variety of input parameters. However, given the novelty of these methods, it is uncertain whether legal obligations are being met. The aim of this paper is to discuss if and how the choice of a specific computational method affects the developer's product liability. The review of legal obligations in this paper is based on German law and focuses on the requirements that must be met during the design and development process.}, language = {en} } @article{AltherrEdererPoettgenetal.2015, author = {Altherr, Lena and Ederer, Thorsten and P{\"o}ttgen, Philipp and Lorenz, Ulf and Pelz, Peter F.}, title = {Multicriterial optimization of technical systems considering multiple load and availability scenarios}, series = {Applied Mechanics and Materials}, volume = {807}, journal = {Applied Mechanics and Materials}, editor = {Pelz, Peter F. and Groche, Peter}, isbn = {1660-9336}, doi = {10.4028/www.scientific.net/AMM.807.247}, pages = {247 -- 256}, year = {2015}, abstract = {Cheap does not imply cost-effective -- this is rule number one of zeitgeisty system design. The initial investment accounts only for a small portion of the lifecycle costs of a technical system. In fluid systems, about ninety percent of the total costs are caused by other factors like power consumption and maintenance. With modern optimization methods, it is already possible to plan an optimal technical system considering multiple objectives. In this paper, we focus on an often neglected contribution to the lifecycle costs: downtime costs due to spontaneous failures. Consequently, availability becomes an issue.}, language = {en} }