@incollection{KnottSofroniaGerressenetal.2014, author = {Knott, Thomas C. and Sofronia, Raluca E. and Gerressen, Marcus and Law, Yuen and Davidescu, Arjana and Savii, George G. and Gatzweiler, Karl-Heinz and Staat, Manfred and Kuhlen, Torsten W.}, title = {Preliminary bone sawing model for a virtual reality-based training simulator of bilateral sagittal split osteotomy}, series = {Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789)}, booktitle = {Biomedical simulation : 6th International Symposium, ISBMS 2014, Strasbourg, France, October 16-17, 2014 : proceedings (Lecture notes in computer science : vol. 8789)}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-12057-7 (Online)}, doi = {10.1007/978-3-319-12057-7_1}, pages = {1 -- 10}, year = {2014}, abstract = {Successful bone sawing requires a high level of skill and experience, which could be gained by the use of Virtual Reality-based simulators. A key aspect of these medical simulators is realistic force feedback. The aim of this paper is to model the bone sawing process in order to develop a valid training simulator for the bilateral sagittal split osteotomy, the most often applied corrective surgery in case of a malposition of the mandible. Bone samples from a human cadaveric mandible were tested using a designed experimental system. Image processing and statistical analysis were used for the selection of four models for the bone sawing process. The results revealed a polynomial dependency between the material removal rate and the applied force. Differences between the three segments of the osteotomy line and between the cortical and cancellous bone were highlighted.}, language = {en} } @incollection{DuongNguyenStaat2017, author = {Duong, Minh Tuan and Nguyen, Nhu Huynh and Staat, Manfred}, title = {Physical response of hyperelastic models for composite materials and soft tissues}, series = {Advances in Composite Material}, booktitle = {Advances in Composite Material}, publisher = {Scientific Research Publishing}, address = {Wuhan}, isbn = {978-1-61896-300-0 (Hardcover), 978-1-61896-299-7 (Paperback)}, pages = {316}, year = {2017}, language = {en} } @incollection{BozakovSander2013, author = {Bozakov, Zdravko and Sander, Volker}, title = {OpenFlow: A Perspective for Building Versatile Networks}, series = {Network-Embedded Management and Applications}, booktitle = {Network-Embedded Management and Applications}, publisher = {Springer}, address = {New York, NY}, isbn = {978-1-4419-6769-5}, doi = {10.1007/978-1-4419-6769-5_11}, pages = {217 -- 245}, year = {2013}, language = {en} } @incollection{Kotliar2021, author = {Kotliar, Konstantin}, title = {Ocular rigidity: clinical approach}, series = {Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye}, booktitle = {Ocular Rigidity, Biomechanics and Hydrodynamics of the Eye}, editor = {Pallikaris, I. and Tsilimbaris, M. K. and Dastiridou, A. I.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64422-2}, doi = {10.1007/978-3-030-64422-2_2}, pages = {15 -- 43}, year = {2021}, abstract = {The term ocular rigidity is widely used in clinical ophthalmology. Generally it is assumed as a resistance of the whole eyeball to mechanical deformation and relates to biomechanical properties of the eye and its tissues. Basic principles and formulas for clinical tonometry, tonography and pulsatile ocular blood flow measurements are based on the concept of ocular rigidity. There is evidence for altered ocular rigidity in aging, in several eye diseases and after eye surgery. Unfortunately, there is no consensual view on ocular rigidity: it used to make a quite different sense for different people but still the same name. Foremost there is no clear consent between biomechanical engineers and ophthalmologists on the concept. Moreover ocular rigidity is occasionally characterized using various parameters with their different physical dimensions. In contrast to engineering approach, clinical approach to ocular rigidity claims to characterize the total mechanical response of the eyeball to its deformation without any detailed considerations on eye morphology or material properties of its tissues. Further to the previous chapter this section aims to describe clinical approach to ocular rigidity from the perspective of an engineer in an attempt to straighten out this concept, to show its advantages, disadvantages and various applications.}, language = {en} } @incollection{Kleefeld2020, author = {Kleefeld, Andreas}, title = {Numerical calculation of interior transmission eigenvalues with mixed boundary conditions}, series = {Computational and Analytic Methods in Science and Engineering}, booktitle = {Computational and Analytic Methods in Science and Engineering}, editor = {Constanda, Christian}, publisher = {Birkh{\"a}user}, address = {Cham}, isbn = {978-3-030-48185-8 (Hardcover)}, doi = {10.1007/978-3-030-48186-5_9}, pages = {173 -- 195}, year = {2020}, abstract = {Interior transmission eigenvalue problems for the Helmholtz equation play an important role in inverse wave scattering. Some distribution properties of those eigenvalues in the complex plane are reviewed. Further, a new scattering model for the interior transmission eigenvalue problem with mixed boundary conditions is described and an efficient algorithm for computing the interior transmission eigenvalues is proposed. Finally, extensive numerical results for a variety of two-dimensional scatterers are presented to show the validity of the proposed scheme.}, language = {en} } @incollection{AbeleKleefeld2020, author = {Abele, Daniel and Kleefeld, Andreas}, title = {New Numerical Results for the Optimization of Neumann Eigenvalues}, series = {Computational and Analytic Methods in Science and Engineering}, booktitle = {Computational and Analytic Methods in Science and Engineering}, editor = {Constanda, Christian}, publisher = {Birkh{\"a}user}, address = {Cham}, isbn = {978-3-030-48185-8 (Print)}, doi = {10.1007/978-3-030-48186-5_1}, pages = {1 -- 20}, year = {2020}, abstract = {We present new numerical results for shape optimization problems of interior Neumann eigenvalues. This field is not well understood from a theoretical standpoint. The existence of shape maximizers is not proven beyond the first two eigenvalues, so we study the problem numerically. We describe a method to compute the eigenvalues for a given shape that combines the boundary element method with an algorithm for nonlinear eigenvalues. As numerical optimization requires many such evaluations, we put a focus on the efficiency of the method and the implemented routine. The method is well suited for parallelization. Using the resulting fast routines and a specialized parametrization of the shapes, we found improved maxima for several eigenvalues.}, language = {en} } @incollection{PoghossianWeilandSchoening2014, author = {Poghossian, Arshak and Weiland, Maryam and Sch{\"o}ning, Michael Josef}, title = {Nanoplate field-effect capacitors: a new transducer structure for multiparameter (bio-)chemical sensing}, series = {Multisensor system for chemical analysis : materials and sensors}, booktitle = {Multisensor system for chemical analysis : materials and sensors}, editor = {Lvova, Larisa and Kirsanov, Dmitry and di Natale, Corrado and Legin, Audrey}, edition = {1}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4411-15-8 ; 978-981-4411-16-5}, doi = {10.1201/b15491-11}, pages = {333 -- 373}, year = {2014}, abstract = {An array of electrically isolated nanoplate field-effect silicon-on-insulator (SOI) capacitors as a new transducer structure for multiparameter (bio-)chemical sensing is presented. The proposed approach allows addressable biasing and electrical readout of multiple nanoplate field-effect capacitive (bio-)chemical sensors on the same SOI chip, as well as differential-mode measurements. The realized sensor chip has been applied for pH and penicillin concentration measurements, electrical monitoring of polyelectrolyte multilayer formation, and the label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization and denaturation events.}, language = {en} } @incollection{PoghossianSchoening2017, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Nanomaterial-Modified Capacitive Field-Effect Biosensors}, series = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, booktitle = {Springer Series on Chemical Sensors and Biosensors (Methods and Applications)}, publisher = {Springer}, address = {Berlin, Heidelberg}, doi = {10.1007/5346_2017_2}, pages = {1 -- 25}, year = {2017}, abstract = {The coupling of charged molecules, nanoparticles, and more generally, inorganic/organic nanohybrids with semiconductor field-effect devices based on an electrolyte-insulator-semiconductor (EIS) system represents a very promising strategy for the active tuning of electrochemical properties of these devices and, thus, opening new opportunities for label-free biosensing by the intrinsic charge of molecules. The simplest field-effect sensor is a capacitive EIS sensor, which represents a (bio-)chemically sensitive capacitor. In this chapter, selected examples of recent developments in the field of label-free biosensing using nanomaterial-modified capacitive EIS sensors are summarized. In the first part, we present applications of EIS sensors modified with negatively charged gold nanoparticles for the label-free electrostatic detection of positively charged small proteins and macromolecules, for monitoring the layer-by-layer formation of oppositely charged polyelectrolyte (PE) multilayers as well as for the development of an enzyme-based biomolecular logic gate. In the second part, examples of a label-free detection by means of EIS sensors modified with a positively charged weak PE layer are demonstrated. These include electrical detection of on-chip and in-solution hybridized DNA (deoxyribonucleic acid) as well as an EIS sensor with pH-responsive weak PE/enzyme multilayers for enhanced field-effect biosensing.}, language = {en} } @incollection{Laack2023, author = {Laack, Walter van}, title = {Nahtoderfahrungen, Sterben und Tod aus der Perspektive von Medizin, Naturwissenschaften und Philosophie}, series = {Thanatologie im deutschsprachigen Raum - Interdisziplin{\"a}re Perspektiven}, booktitle = {Thanatologie im deutschsprachigen Raum - Interdisziplin{\"a}re Perspektiven}, editor = {Ortmanns, Bruno and Brauers, Angelika}, publisher = {Rediroma-Verlag}, isbn = {978-3-98527-661-5}, pages = {129 -- 139}, year = {2023}, language = {de} } @incollection{MuellerVeggianKopsQuinetal.2007, author = {M{\"u}ller-Veggian, Mattea and Kops, Elena Rota and Quin, Peng and Herzog, Hans}, title = {MRI Based Attenuation Correction for Brain PET Images}, series = {Advances in medical engineering / [3rd RPT - Remagener Physiktage together with the Second Scientific Workshop of Medical Robotics, Navigation and Visualization ... Remagen ... 7.-9. M{\"a}rz 2007]. Thorsten M. Buzug (ed.) Part 1.}, booktitle = {Advances in medical engineering / [3rd RPT - Remagener Physiktage together with the Second Scientific Workshop of Medical Robotics, Navigation and Visualization ... Remagen ... 7.-9. M{\"a}rz 2007]. Thorsten M. Buzug (ed.) Part 1.}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-68763-4}, doi = {10.1007/978-3-540-68764-1_15}, pages = {93 -- 97}, year = {2007}, abstract = {This work describes a procedure to yield attenuation maps from MR images which are used for the absorption correction (AC) of brain PET data. Such an approach could be mandatory for future combined PET and MRI scanners, which probably do not include a transmission facility. T1-weighted MR images were segmented into brain tissue, bone, soft tissue, and sinus; attenuation coefficients corresponding to elemental composition and density as well as to 511 keV photon energy were respectively assigned. Attenuation maps containing up to four compartments were created and forward projected into sinograms with attenuation factors which then were used for AC during reconstruction of FDG-PET data. The commonly used AC based on a radioactive (68Ge) transmission scan served as reference. The reconstructed radioactivity values obtained with the MRI-based AC were about 20\% lower than those obtained with PET-based AC if the skull was not taken into account. Considering the skull the difference was still about 10\%. Our investigations demonstrate the feasibility of a MRI-based AC, but revealed also the necessity of a satisfying delineation of bone thickness which tends to be underestimated in our first approach of T1-weighted MR image segmentation.}, language = {en} }