@article{AlexopoulosHoffschmidt2017, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard}, title = {Advances in solar tower technology}, series = {Wiley interdisciplinary reviews : Energy and Environment : WIREs}, volume = {6}, journal = {Wiley interdisciplinary reviews : Energy and Environment : WIREs}, number = {1}, publisher = {Wiley}, address = {Weinheim}, issn = {2041-840X}, doi = {10.1002/wene.217}, pages = {1 -- 19}, year = {2017}, language = {en} } @article{SchwagerFleschSchwarzboezletal.2022, author = {Schwager, Christian and Flesch, Robert and Schwarzb{\"o}zl, Peter and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e}}, title = {Advanced two phase flow model for transient molten salt receiver system simulation}, series = {Solar Energy}, volume = {232}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X (print)}, doi = {10.1016/j.solener.2021.12.065}, pages = {362 -- 375}, year = {2022}, abstract = {In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed.}, language = {en} } @article{HoylerPetkovAndrejtscheff1988, author = {Hoyler, Friedrich and Petkov, P. and Andrejtscheff, W.}, title = {Absolute E0, E1 and E2 transition rates in even-even nuclei obtained in thermal neutron capture / P. Petkov ; W. Andrejtscheff ... F. Hoyler ...}, series = {Journal of Physics G. 14 (1988), H. S}, journal = {Journal of Physics G. 14 (1988), H. S}, isbn = {0305-4616}, pages = {S97 -- S102}, year = {1988}, language = {en} } @article{StockMalindretosIndlekoferetal.2001, author = {Stock, J. and Malindretos, J. and Indlekofer, K.M. and P{\"o}ttgens, Michael and F{\"o}rster, Arnold and L{\"u}th, Hans}, title = {A Vertical Resonant Tunneling Transistor for Application in Digital Logic Circuits}, series = {IEEE Transactions on Electron Devices (T-ED). 48 (2001), H. 6}, journal = {IEEE Transactions on Electron Devices (T-ED). 48 (2001), H. 6}, isbn = {0018-9383}, pages = {1028 -- 1032}, year = {2001}, language = {en} } @article{HardtKoehlerMuelleretal.1980, author = {Hardt, Arno and K{\"o}hler, M. and M{\"u}ller, K. D. and Stoff, H.}, title = {A two-dimensional position sensitive charged-particle detector for the magnetic spectrograph "BIG KARL" of the J{\"u}lich Cyclotron "JULIC". M. K{\"o}hler, K. D. M{\"u}ller, H. Stoff, M. Teske, G. P. A. Berg, A. Hardt, S. Martin, C. Mayer-B{\"o}ricke , J. Meißburger}, series = {Nuclear Instruments and Methods. 75 (1980), H. 2-3}, journal = {Nuclear Instruments and Methods. 75 (1980), H. 2-3}, isbn = {0029-554X}, pages = {357 -- 362}, year = {1980}, language = {en} } @article{PieperKlein2011, author = {Pieper, Martin and Klein, Peter}, title = {A simple and accurate numerical network flow model for bionic micro heat exchangers}, series = {Heat mass transfer}, volume = {47}, journal = {Heat mass transfer}, number = {5}, publisher = {Springer}, address = {Berlin}, isbn = {0947-7411}, pages = {491 -- 503}, year = {2011}, language = {en} } @article{HoylerCollinsEid1989, author = {Hoyler, Friedrich and Collins, S. P. and Eid, S. A.}, title = {A search for mixed-symmetry states in the mass A approximately 50 region / S. P. Collins ; S. A. Eid ... F. Hoyler}, series = {Journal of Physics G. 15 (1989), H. 3}, journal = {Journal of Physics G. 15 (1989), H. 3}, isbn = {0954-3899}, pages = {321 -- 332}, year = {1989}, language = {en} } @article{HodelOrzatiMarsoetal.2000, author = {Hodel, U. and Orzati, A. and Marso, M. and Homann, O. and Fox, A. and Hart, A. v. d. and F{\"o}rster, Arnold and Kordos, P. and L{\"u}th, H.}, title = {A novel InAlAs/InGaAs layer structure for monolithically integrated photoreceiver}, series = {Conference Proceedings: 2000 International Conference on Indium Phosphide and related materials}, journal = {Conference Proceedings: 2000 International Conference on Indium Phosphide and related materials}, publisher = {IEEE Service Center}, address = {Piscataway, NJ}, isbn = {0-7803-6320-5}, pages = {466 -- 469}, year = {2000}, language = {en} } @article{ChenClauserMarquartetal.2015, author = {Chen, Tao and Clauser, Christoph and Marquart, Gabriele and Willbrand, Karen and Mottaghy, Darius}, title = {A new upscaling method for fractured porous media}, series = {Advances in Water Resources}, volume = {80}, journal = {Advances in Water Resources}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0309-1708}, doi = {10.1016/j.advwatres.2015.03.009}, pages = {60 -- 68}, year = {2015}, language = {en} } @article{SchwarzerdaSilvaHoffschmidtetal.2009, author = {Schwarzer, Klemens and da Silva, Vieira E. and Hoffschmidt, Bernhard and Schwarzer, T.}, title = {A new solar desalination system with heat recovery for decentralised drinking water production}, series = {Desalination. 248 (2009), H. 1-3}, journal = {Desalination. 248 (2009), H. 1-3}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0011-9164}, pages = {204 -- 211}, year = {2009}, language = {en} }