@phdthesis{Bung2009, author = {Bung, Daniel B.}, title = {Zur selbstbel{\"u}fteten Gerinnestr{\"o}mung auf Kaskaden mit gem{\"a}ßigter Neigung. (Bericht / Fachbereich Bautechnik, Lehr- und Forschungsgebiet Wasserbau und Wasserwirtschaft, Bergische Universit{\"a}t Gesamthochschule Wuppertal ; Bd. 16)}, publisher = {Shaker}, address = {Aachen}, isbn = {978-3-8322-8382-7}, pages = {XXVI, 292 S.. : Ill., graph. Darst.}, year = {2009}, language = {de} } @inproceedings{TullisCrookstonBung2019, author = {Tullis, Blake P. and Crookston, Brian M. and Bung, Daniel B.}, title = {Weir head-discharge relationships: A multi-lab exercise}, series = {E-proceedings of the 38th IAHR World Congress September 1-6, 2019, Panama City, Panama}, booktitle = {E-proceedings of the 38th IAHR World Congress September 1-6, 2019, Panama City, Panama}, pages = {1 -- 15}, year = {2019}, language = {en} } @inproceedings{KerpenSchooneesSchlurmannetal.2019, author = {Kerpen, Nils B. and Schoonees, Talia and Schlurmann, Torsten and Valero, Daniel and Bung, Daniel B.}, title = {waveSTEPS - Wellenauf- und Wellen{\"u}berlauf an getreppten Deckwerken}, series = {24. KFKI-Seminar 2019, 21.11.2019}, booktitle = {24. KFKI-Seminar 2019, 21.11.2019}, pages = {2 Seiten}, year = {2019}, language = {de} } @inproceedings{BungOertel2019, author = {Bung, Daniel B. and Oertel, Mario}, title = {Wave breaking over a submerged horizontal plate: Optical Flow, LES and RANS}, series = {E-proceedings of the 38th IAHR World Congress September 1-6, 2019, Panama City, Panama}, booktitle = {E-proceedings of the 38th IAHR World Congress September 1-6, 2019, Panama City, Panama}, doi = {10.3850/38WC092019-0509}, pages = {3690 -- 3698}, year = {2019}, language = {en} } @article{ValeroBung2018, author = {Valero, Daniel and Bung, Daniel B.}, title = {Vectrino profiler spatial filtering for shear flows based on the mean velocity gradient equation}, series = {Journal of Hydraulic Engineering}, volume = {144}, journal = {Journal of Hydraulic Engineering}, number = {7}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429}, doi = {10.1061/(ASCE)HY.1943-7900.0001485}, year = {2018}, abstract = {A new methodology is proposed to spatially filter acoustic Doppler velocimetry data from a Vectrino profiler based on the differential mean velocity equation. Lower and upper bounds are formulated in terms of physically based flow constraints. Practical implementation is discussed, and its application is tested against data gathered from an open-channel flow over a stepped macroroughness surface. The method has proven to detect outliers occurring all over the distance range sampled by the Vectrino profiler and has shown to remain applicable out of the region of validity of the velocity gradient equation. Finally, a statistical analysis suggests that physically obtained bounds are asymptotically representative.}, language = {en} } @inproceedings{BungSunMeirelesetal.2012, author = {Bung, Daniel B. and Sun, Q. and Meireles, I. and Matos, J. and Viseu, T.}, title = {USBR type III stilling basin performance for steep stepped spillways}, series = {Hydraulic structures into the 21st century : 4th IAHR International Symposium on Hydraulic Structures : 9.-11.2.2012, Porto}, booktitle = {Hydraulic structures into the 21st century : 4th IAHR International Symposium on Hydraulic Structures : 9.-11.2.2012, Porto}, organization = {International Symposium on Hydraulic Structures <4, 2012, Porto>}, isbn = {978-989-8509-01-7}, pages = {Elektronisch publiziert}, year = {2012}, language = {en} } @article{ValeroBungErpicumetal.2022, author = {Valero, Daniel and Bung, Daniel B. and Erpicum, Sebastien and Peltier, Yann and Dewals, Benjamin}, title = {Unsteady shallow meandering flows in rectangular reservoirs: a modal analysis of URANS modelling}, series = {Journal of Hydro-environment Research}, journal = {Journal of Hydro-environment Research}, number = {In Press}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1570-6443}, doi = {10.1016/j.jher.2022.03.002}, year = {2022}, abstract = {Shallow flows are common in natural and human-made environments. Even for simple rectangular shallow reservoirs, recent laboratory experiments show that the developing flow fields are particularly complex, involving large-scale turbulent structures. For specific combinations of reservoir size and hydraulic conditions, a meandering jet can be observed. While some aspects of this pseudo-2D flow pattern can be reproduced using a 2D numerical model, new 3D simulations, based on the unsteady Reynolds-Averaged Navier-Stokes equations, show consistent advantages as presented herein. A Proper Orthogonal Decomposition was used to characterize the four most energetic modes of the meandering jet at the free surface level, allowing comparison against experimental data and 2D (depth-averaged) numerical results. Three different isotropic eddy viscosity models (RNG k-ε, k-ε, k-ω) were tested. The 3D models accurately predicted the frequency of the modes, whereas the amplitudes of the modes and associated energy were damped for the friction-dominant cases and augmented for non-frictional ones. The performance of the three turbulence models remained essentially similar, with slightly better predictions by RNG k-ε model in the case with the highest Reynolds number. Finally, the Q-criterion was used to identify vortices and study their dynamics, assisting on the identification of the differences between: i) the three-dimensional phenomenon (here reproduced), ii) its two-dimensional footprint in the free surface (experimental observations) and iii) the depth-averaged case (represented by 2D models).}, language = {en} } @article{BungCrookstonValero2020, author = {Bung, Daniel B. and Crookston, Brian M. and Valero, Daniel}, title = {Turbulent free-surface monitoring with an RGB-D sensor: the hydraulic jump case}, series = {Journal of Hydraulic Research}, journal = {Journal of Hydraulic Research}, publisher = {Taylor \& Francis}, address = {London}, issn = {1814-2079}, doi = {10.1080/00221686.2020.1844810}, year = {2020}, language = {en} } @inproceedings{ValeroBungOertel2016, author = {Valero, Daniel and Bung, Daniel B. and Oertel, M.}, title = {Turbulent dispersion in bounded horizontal jets : RANS capabilities and physical modeling comparison}, series = {Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016)}, booktitle = {Sustainable Hydraulics in the Era of Global Change : Proceedings of the 4th IAHR Europe Congress (Liege, Belgium, 27-29 July 2016)}, editor = {Dewals, Benjamin}, publisher = {CRC Press}, isbn = {978-1-138-02977-4}, doi = {10.1201/b21902-13}, pages = {49 -- 55}, year = {2016}, language = {en} } @article{KramerValeroChansonetal.2019, author = {Kramer, Matthias and Valero, Daniel and Chanson, Hubert and Bung, Daniel B.}, title = {Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique}, series = {Experiments in Fluids}, volume = {60}, journal = {Experiments in Fluids}, publisher = {Springer}, address = {Berlin}, issn = {1432-1114}, doi = {10.1007/s00348-018-2650-9}, year = {2019}, language = {en} }