@inproceedings{TakenagaWernerSawadaetal.2012, author = {Takenaga, Shoko and Werner, Frederik and Sawada, Kazuaki and Sch{\"o}ning, Michael Josef}, title = {Comparison of label-free ACh image sensors based on CCD and LAPS}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/4.2.6}, pages = {356 -- 359}, year = {2012}, language = {en} } @article{Ziemons1991, author = {Ziemons, Karl}, title = {Comparison of forward hadrons produced in muon interactions on nuclear targets and deuterium}, series = {Zeitschrift f{\"u}r Physik C Particles and Fields}, volume = {52}, journal = {Zeitschrift f{\"u}r Physik C Particles and Fields}, number = {1}, isbn = {1431-5858}, pages = {1 -- 11}, year = {1991}, abstract = {Differential multiplicities of forward produced hadrons in deep inelastic muon scattering on nuclear targets have been compared with those from deuterium. The ratios are observed to increase towards unity as the virtual photon energy increases with no significant dependence on the other muon kinematic variables. The hadron transverse momentum distribution is observed to be broadened in nuclear targets. The dependence on the remaining hadron variables is investigated and the results are discussed in the framework of intranuclear interaction models and in the context of the EMC effect.}, language = {en} } @article{SchierenKleinschmidtSchmutzetal.2019, author = {Schieren, Mark and Kleinschmidt, Joris and Schmutz, Axel and Loop, Torsten and Gatzweiler, Karl-Heinz and Staat, Manfred and Wappler, Frank and Defosse, Jerome}, title = {Comparison of forces acting on maxillary incisors during tracheal intubation with different laryngoscopy techniques: a blinded manikin study}, series = {Anaesthesia}, volume = {74}, journal = {Anaesthesia}, number = {12}, publisher = {Wiley-Blackwell}, address = {Oxford}, isbn = {1365-2044}, doi = {10.1111/anae.14815}, year = {2019}, language = {en} } @article{Hillen1980, author = {Hillen, Walter}, title = {Comparison of e+e\&\#8722; annihilation with QCD and determination of the strong coupling constant . TASSO Collaboration}, series = {Physics Letters B. 94 (1980), H. 3}, journal = {Physics Letters B. 94 (1980), H. 3}, isbn = {0370-2693}, pages = {437 -- 443}, year = {1980}, language = {en} } @article{KetelhutGoellBraunsteinetal.2018, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bj{\"o}rn and Albracht, Kirsten and Abel, Dirk}, title = {Comparison of different training algorithms for the leg extension training with an industrial robot}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0005}, pages = {17 -- 20}, year = {2018}, abstract = {In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot's acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption.}, language = {en} } @article{EngelmannShalabyShashaetal.2021, author = {Engelmann, Ulrich M. and Shalaby, Ahmed and Shasha, Carolyn and Krishnan, Kannan M. and Krause, Hans-Joachim}, title = {Comparative modeling of frequency mixing measurements of magnetic nanoparticles using micromagnetic simulations and Langevin theory}, series = {Nanomaterials}, volume = {11}, journal = {Nanomaterials}, number = {5}, publisher = {MDPI}, address = {Basel}, isbn = {2079-4991}, doi = {10.3390/nano11051257}, pages = {1 -- 16}, year = {2021}, abstract = {Dual frequency magnetic excitation of magnetic nanoparticles (MNP) enables enhanced biosensing applications. This was studied from an experimental and theoretical perspective: nonlinear sum-frequency components of MNP exposed to dual-frequency magnetic excitation were measured as a function of static magnetic offset field. The Langevin model in thermodynamic equilibrium was fitted to the experimental data to derive parameters of the lognormal core size distribution. These parameters were subsequently used as inputs for micromagnetic Monte-Carlo (MC)-simulations. From the hysteresis loops obtained from MC-simulations, sum-frequency components were numerically demodulated and compared with both experiment and Langevin model predictions. From the latter, we derived that approximately 90\% of the frequency mixing magnetic response signal is generated by the largest 10\% of MNP. We therefore suggest that small particles do not contribute to the frequency mixing signal, which is supported by MC-simulation results. Both theoretical approaches describe the experimental signal shapes well, but with notable differences between experiment and micromagnetic simulations. These deviations could result from Brownian relaxations which are, albeit experimentally inhibited, included in MC-simulation, or (yet unconsidered) cluster-effects of MNP, or inaccurately derived input for MC-simulations, because the largest particles dominate the experimental signal but concurrently do not fulfill the precondition of thermodynamic equilibrium required by Langevin theory.}, language = {en} } @article{KnoxBruggemannGossmannetal.2020, author = {Knox, Ronald and Bruggemann, Andrea and Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Fertig, Niels and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {Combining physiological relevance and throughput for in vitro cardiac contractility measurement}, series = {Biophysical Journal}, volume = {118}, journal = {Biophysical Journal}, number = {Issue 3, Supplement 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0006-3495}, doi = {10.1016/j.bpj.2019.11.3104}, pages = {570a}, year = {2020}, abstract = {Despite increasing acceptance of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in safety pharmacology, controversy remains about the physiological relevance of existing in vitro models for their mechanical testing. We hypothesize that existing signs of immaturity of the cell models result from an improper mechanical environment. We cultured hiPSC-CMs in a 96-well format on hyperelastic silicone membranes imitating their native mechanical environment, resulting in physiological responses to compound stimuli.We validated cell responses on the FLEXcyte 96, with a set of reference compounds covering a broad range of cellular targets, including ion channel modulators, adrenergic receptor modulators and kinase inhibitors. Acute (10 - 30 min) and chronic (up to 7 days) effects were investigated. Furthermore, the measurements were complemented with electromechanical models based on electrophysiological recordings of the used cell types.hiPSC-CMs were cultured on freely-swinging, ultra-thin and hyperelastic silicone membranes. The weight of the cell culture medium deflects the membranes downwards. Rhythmic contraction of the hiPSC-CMs resulted in dynamic deflection changes which were quantified by capacitive distance sensing. The cells were cultured for 7 days prior to compound addition. Acute measurements were conducted 10-30 minutes after compound addition in standard culture medium. For chronic treatment, compound-containing medium was replaced daily for up to 7 days. Electrophysiological properties of the employed cell types were recorded by automated patch-clamp (Patchliner) and the results were integrated into the electromechanical model of the system.Calcium channel agonist S Bay K8644 and beta-adrenergic stimulator isoproterenol induced significant positive inotropic responses without additional external stimulation. Kinase inhibitors displayed cardiotoxic effects on a functional level at low concentrations. The system-integrated analysis detected alterations in beating shape as well as frequency and arrhythmic events and we provide a quantitative measure of these.}, language = {en} } @article{EngelmannRoethEberbecketal.2018, author = {Engelmann, Ulrich M. and Roeth, Anjali A.J. and Eberbeck, Dietmar and Buhl, Eva Miriam and Neumann, Ulf Peter and Schmitz-Rode, Thomas and Slabu, Ioana}, title = {Combining Bulk Temperature and Nanoheating Enables Advanced Magnetic Fluid Hyperthermia Efficacy on Pancreatic Tumor Cells}, series = {Scientific Reports}, volume = {8}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {2045-2322}, doi = {10.1038/s41598-018-31553-9}, pages = {Article number 13210}, year = {2018}, abstract = {Many efforts are made worldwide to establish magnetic fluid hyperthermia (MFH) as a treatment for organ-confined tumors. However, translation to clinical application hardly succeeds as it still lacks of understanding the mechanisms determining MFH cytotoxic effects. Here, we investigate the intracellular MFH efficacy with respect to different parameters and assess the intracellular cytotoxic effects in detail. For this, MiaPaCa-2 human pancreatic tumor cells and L929 murine fibroblasts were loaded with iron-oxide magnetic nanoparticles (MNP) and exposed to MFH for either 30 min or 90 min. The resulting cytotoxic effects were assessed via clonogenic assay. Our results demonstrate that cell damage depends not only on the obvious parameters bulk temperature and duration of treatment, but most importantly on cell type and thermal energy deposited per cell during MFH treatment. Tumor cell death of 95\% was achieved by depositing an intracellular total thermal energy with about 50\% margin to damage of healthy cells. This is attributed to combined intracellular nanoheating and extracellular bulk heating. Tumor cell damage of up to 86\% was observed for MFH treatment without perceptible bulk temperature rise. Effective heating decreased by up to 65\% after MNP were internalized inside cells.}, language = {en} } @article{MusholtSchoendorfPfuetzneretal.2009, author = {Musholt, Petra B. and Sch{\"o}ndorf, Thomas and Pf{\"u}tzner, Andreas and Hohberg, Cloth and Kleine, Iris and Fuchs, Winfried and Hehenwarter, Silvia and Dikta, Gerhard and Kerschgens, Benedikt and Forst, Thomas}, title = {Combined Pioglitazone and Metformin Treatment Maintains the Beneficial Effect of Short-Term Insulin Infusion in Patients with Type 2 Diabetes: Results from a Pilot Study}, series = {Journal of Diabetes Science and Technology. 3 (2009), H. 6}, journal = {Journal of Diabetes Science and Technology. 3 (2009), H. 6}, publisher = {Sage Publishing}, address = {London}, isbn = {1932-2968}, pages = {1442 -- 1450}, year = {2009}, language = {en} } @article{JahnkeMenzelDusschotenetal.2009, author = {Jahnke, Siegfried and Menzel, Marion I. and Dusschoten, Dagmar van and Roeb, Gerhard W. and B{\"u}hler, Jonas and Minwuyelet, Senay and Bl{\"u}mler, Peter and Temperton, Vicky M. and Hombach, Thomas and Streun, Matthias and Beer, Simone and Khodaverdi, Maryam and Ziemons, Karl and Coenen, Heinz H. and Schurr, Ulrich}, title = {Combined MRI-PET dissects dynamic changes in plant structures and functions}, series = {The Plant Journal}, volume = {59}, journal = {The Plant Journal}, number = {4}, publisher = {Wiley}, address = {Weinheim}, isbn = {1365-313X}, pages = {634 -- 644}, year = {2009}, abstract = {Unravelling the factors determining the allocation of carbon to various plant organs is one of the great challenges of modern plant biology. Studying allocation under close to natural conditions requires non-invasive methods, which are now becoming available for measuring plants on a par with those developed for humans. By combining magnetic resonance imaging (MRI) and positron emission tomography (PET), we investigated three contrasting root/shoot systems growing in sand or soil, with respect to their structures, transport routes and the translocation dynamics of recently fixed photoassimilates labelled with the short-lived radioactive carbon isotope 11C. Storage organs of sugar beet (Beta vulgaris) and radish plants (Raphanus sativus) were assessed using MRI, providing images of the internal structures of the organs with high spatial resolution, and while species-specific transport sectoralities, properties of assimilate allocation and unloading characteristics were measured using PET. Growth and carbon allocation within complex root systems were monitored in maize plants (Zea mays), and the results may be used to identify factors affecting root growth in natural substrates or in competition with roots of other plants. MRI-PET co-registration opens the door for non-invasive analysis of plant structures and transport processes that may change in response to genomic, developmental or environmental challenges. It is our aim to make the methods applicable for quantitative analyses of plant traits in phenotyping as well as in understanding the dynamics of key processes that are essential to plant performance.}, language = {en} }