@article{GutheilBergGrotendorst2012, author = {Gutheil, Inge and Berg, Tommy and Grotendorst, Johannes}, title = {Performance Analysis of Parallel Eigensolvers of two Libraries on BlueGene/P}, series = {Journal of Mathematics and Systems Science}, volume = {2}, journal = {Journal of Mathematics and Systems Science}, number = {4}, publisher = {David Publishing}, address = {Libertyville}, issn = {2159-5291}, doi = {10.17265/2159-5291/2012.04.003}, pages = {231 -- 236}, year = {2012}, abstract = {Many applications in computational science and engineering require the computation of eigenvalues and vectors of dense symmetric or Hermitian matrices. For example, in DFT (density functional theory) calculations on modern supercomputers 10\% to 30\% of the eigenvalues and eigenvectors of huge dense matrices have to be calculated. Therefore, performance and parallel scaling of the used eigensolvers is of upmost interest. In this article different routines of the linear algebra packages ScaLAPACK and Elemental for parallel solution of the symmetric eigenvalue problem are compared concerning their performance on the BlueGene/P supercomputer. Parameters for performance optimization are adjusted for the different data distribution methods used in the two libraries. It is found that for all test cases the new library Elemental which uses a two-dimensional element by element distribution of the matrices to the processors shows better performance than the old ScaLAPACK library which uses a block-cyclic distribution.}, language = {en} } @article{VantStaatBaroud2008, author = {Vant, Christianne and Staat, Manfred and Baroud, Gamal}, title = {Percutaneous Vertebroplasty: A Review of Two Intraoperative Complications}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {527 -- 539}, year = {2008}, language = {en} } @article{AbouzarPoghossianRazavietal.2008, author = {Abouzar, Maryam H. and Poghossian, Arshak and Razavi, Arash and Besmehn, Astrid and Bijnens, Nathalie and Williams, Oliver A. and Haenen, Ken and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Penicillin detection with nanocrystalline-diamond field-effect sensor}, series = {physica status solidi (a). 205 (2008), H. 9}, journal = {physica status solidi (a). 205 (2008), H. 9}, isbn = {1862-6319}, pages = {2141 -- 2145}, year = {2008}, language = {en} } @article{KochPoghossianSchoeningetal.2018, author = {Koch, Claudia and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Wege, Christian}, title = {Penicillin Detection by Tobacco Mosaic Virus-Assisted Colorimetric Biosensors}, series = {Nanotheranostics}, volume = {2}, journal = {Nanotheranostics}, number = {2}, publisher = {Ivyspring}, address = {Sydney}, issn = {2206-7418}, doi = {10.7150/ntno.22114}, pages = {184 -- 196}, year = {2018}, abstract = {The presentation of enzymes on viral scaffolds has beneficial effects such as an increased enzyme loading and a prolonged reusability in comparison to conventional immobilization platforms. Here, we used modified tobacco mosaic virus (TMV) nanorods as enzyme carriers in penicillin G detection for the first time. Penicillinase enzymes were conjugated with streptavidin and coupled to TMV rods by use of a bifunctional biotin-linker. Penicillinase-decorated TMV particles were characterized extensively in halochromic dye-based biosensing. Acidometric analyte detection was performed with bromcresol purple as pH indicator and spectrophotometry. The TMV-assisted sensors exhibited increased enzyme loading and strongly improved reusability, and higher analysis rates compared to layouts without viral adapters. They extended the half-life of the sensors from 4 - 6 days to 5 weeks and thus allowed an at least 8-fold longer use of the sensors. Using a commercial budget-priced penicillinase preparation, a detection limit of 100 µM penicillin was obtained. Initial experiments also indicate that the system may be transferred to label-free detection layouts.}, language = {en} } @article{PoghossianThustSchrothetal.2001, author = {Poghossian, Arshak and Thust, M. and Schroth, P. and Steffen, A. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Penicillin detection by means of silicon-based field-effect structures}, series = {Sensors and Materials. 13 (2001), H. 4}, journal = {Sensors and Materials. 13 (2001), H. 4}, isbn = {0392-2510}, pages = {207 -- 223}, year = {2001}, language = {en} } @article{PoghossianYoshinobuSimonisetal.2001, author = {Poghossian, Arshak and Yoshinobu, Tatsuo and Simonis, A. and Ecken, H. and L{\"u}th, Hans and Sch{\"o}ning, Michael Josef}, title = {Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?}, series = {Sensors and Actuators B. 78 (2001), H. 1-3}, journal = {Sensors and Actuators B. 78 (2001), H. 1-3}, isbn = {0925-4005}, pages = {237 -- 242}, year = {2001}, language = {en} } @article{PoghossianYoshinobuSimonisetal.2000, author = {Poghossian, Arshak and Yoshinobu, T. and Simonis, A. and Ecken, H. and L{\"u}th, H. and Sch{\"o}ning, Michael Josef}, title = {Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS?}, series = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, journal = {Proceedings : Copenhagen, Denmark, 27 - 30 August 2000 / [ed.: R. de Reus ...]}, publisher = {MIC, Mikroelektronik Centret}, address = {Lyngby, Denmark}, isbn = {87-89935-50-0}, pages = {27 -- 30}, year = {2000}, language = {en} } @article{SiqueiraAbouzarPoghossianetal.2009, author = {Siqueira, Jos{\´e} R. Jr. and Abouzar, Maryam H. and Poghossian, Arshak and Zucolotto, Valtencir and Oliveira, Osvaldo N. Jr. and Sch{\"o}ning, Michael Josef}, title = {Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer}, series = {Biosensors and Bioelectronics. 25 (2009), H. 2}, journal = {Biosensors and Bioelectronics. 25 (2009), H. 2}, isbn = {0956-5663}, pages = {497 -- 501}, year = {2009}, language = {en} } @inproceedings{BhattaraiStaat2018, author = {Bhattarai, Aroj and Staat, Manfred}, title = {Pectopexy to repair vaginal vault prolapse: a finite element approach}, series = {Proceedings CMBBE 2018}, booktitle = {Proceedings CMBBE 2018}, editor = {Fernandes, P.R. and Tavares, J. M.}, year = {2018}, abstract = {The vaginal prolapse after hysterectomy (removal of the uterus) is often associated with the prolapse of the vaginal vault, rectum, bladder, urethra or small bowel. Minimally invasive surgery such as laparoscopic sacrocolpopexy and pectopexy are widely performed for the treatment of the vaginal prolapse with weakly supported vaginal vault after hysterectomy using prosthetic mesh implants to support (or strengthen) lax apical ligaments. Implants of different shape, size and polymers are selected depending on the patient's anatomy and the surgeon's preference. In this computational study on pectopexy, DynaMesh®-PRP soft, GYNECARE GYNEMESH® PS Nonabsorbable PROLENE® soft and Ultrapro® are tested in a 3D finite element model of the female pelvic floor. The mesh model is implanted into the extraperitoneal space and sutured to the vaginal stump with a bilateral fixation to the iliopectineal ligament at both sides. Numerical simulations are conducted at rest, after surgery and during Valsalva maneuver with weakened tissues modeled by reduced tissue stiffness. Tissues and prosthetic meshes are modeled as incompressible, isotropic hyperelastic materials. The positions of the organs are calculated with respect to the pubococcygeal line (PCL) for female pelvic floor at rest, after repair and during Valsalva maneuver using the three meshes.}, language = {en} } @article{WeberMoRamakrishna2006, author = {Weber, Hans-Joachim and Mo, Xiumei and Ramakrishna, S.}, title = {PCL-PGLA composite tubular scaffold preparation and biocompatibility investigation / X. Mo, H.-J. Weber, S. Ramakrishna}, series = {The International journal of artificial organs. 29 (2006), H. 8}, journal = {The International journal of artificial organs. 29 (2006), H. 8}, publisher = {-}, pages = {790 -- 799}, year = {2006}, language = {en} }