@article{MuellerVeggianHaenniBeuscheretal.1980, author = {M{\"u}ller-Veggian, Mattea and Haenni, D. R. and Beuscher, H. and Bochev, B.}, title = {New isomeric state in ¹⁴⁴ Eu}, series = {Annual report 1979 / Kernforschungsanlage J{\"u}lich Institut f{\"u}r Kernphysik / Hrsg.: A. F{\"a}ssler. - (Spezielle Berichte der Kernforschungsanlage J{\"u}lich ; 72)}, journal = {Annual report 1979 / Kernforschungsanlage J{\"u}lich Institut f{\"u}r Kernphysik / Hrsg.: A. F{\"a}ssler. - (Spezielle Berichte der Kernforschungsanlage J{\"u}lich ; 72)}, publisher = {Kernforschungsanlage}, address = {J{\"u}lich}, pages = {48}, year = {1980}, language = {en} } @article{SimonisLuethWangetal.2004, author = {Simonis, A. and L{\"u}th, H. and Wang, J. and Sch{\"o}ning, Michael Josef}, title = {New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems}, series = {Sensors and Actuators B. 103 (2004), H. 1-2}, journal = {Sensors and Actuators B. 103 (2004), H. 1-2}, isbn = {0925-4005}, pages = {429 -- 435}, year = {2004}, language = {en} } @article{NamAroraBehbahanietal.2010, author = {Nam, J. and Arora, D. and Behbahani, Mehdi and Probst, M. and Benkowski, R. and Behr, M. and Pasquali, M.}, title = {New computational method in hemolysis analysis for artificial heart pump}, year = {2010}, language = {en} } @article{GerhardsSanderZivkovicetal.2020, author = {Gerhards, Michael and Sander, Volker and Zivkovic, Miroslav and Belloum, Adam and Bubak, Marian}, title = {New approach to allocation planning of many-task workflows on clouds}, series = {Concurrency and Computation: Practice and Experience}, volume = {32}, journal = {Concurrency and Computation: Practice and Experience}, number = {2 Article e5404}, publisher = {Wiley}, address = {Chichester}, issn = {1532-0634}, doi = {10.1002/cpe.5404}, pages = {1 -- 16}, year = {2020}, abstract = {Experience has shown that a priori created static resource allocation plans are vulnerable to runtime deviations and hence often become uneconomic or highly exceed a predefined soft deadline. The assumption of constant task execution times during allocation planning is even more unlikely in a cloud environment where virtualized resources vary in performance. Revising the initially created resource allocation plan at runtime allows the scheduler to react on deviations between planning and execution. Such an adaptive rescheduling of a many-task application workflow is only feasible, when the planning time can be handled efficiently at runtime. In this paper, we present the static low-complexity resource allocation planning algorithm (LCP) applicable to efficiently schedule many-task scientific application workflows on cloud resources of different capabilities. The benefits of the presented algorithm are benchmarked against alternative approaches. The benchmark results show that LCP is not only able to compete against higher complexity algorithms in terms of planned costs and planned makespan but also outperforms them significantly by magnitudes of 2 to 160 in terms of required planning time. Hence, LCP is superior in terms of practical usability where low planning time is essential such as in our targeted online rescheduling scenario.}, language = {en} } @article{GrotendorstScottAubertFrecon2006, author = {Grotendorst, Johannes and Scott, Tony C. and Aubert-Fr{\´e}con, Monique}, title = {New Approach for the Electronic Energies of the Hydrogen Molecular Ion / Scott, Tony C. ; Aubert-Fr{\´e}con, Monique ; Grotendorst, Johannes}, series = {Chemical Physics. 324 (2006), H. 2/3}, journal = {Chemical Physics. 324 (2006), H. 2/3}, isbn = {0301-0104}, pages = {323 -- 338}, year = {2006}, language = {en} } @article{LaackRefisch1989, author = {Laack, Walter van and Refisch, A.}, title = {Neuralgic amyotrophy of the lumbar area. Case Report / Refisch, A. ; Laack, W. van}, series = {Archives of Orthopaedic and Trauma Surgery. 108 (1989), H. 5}, journal = {Archives of Orthopaedic and Trauma Surgery. 108 (1989), H. 5}, isbn = {0936-8051}, pages = {329 -- 332}, year = {1989}, language = {en} } @book{Sander2004, author = {Sander, Volker}, title = {Networking Issues for Grid Infrastructure / Sander, Volker (ed.)}, publisher = {Global Grid Forum}, pages = {52 S.}, year = {2004}, language = {en} } @article{KowalskiLinderZierkeetal.2016, author = {Kowalski, Julia and Linder, Peter and Zierke, S. and Wulfen, B. van and Clemens, J. and Konstantinidis, K. and Ameres, G. and Hoffmann, R. and Mikucki, J. and Tulaczyk, S. and Funke, O. and Blandfort, D. and Espe, Clemens and Feldmann, Marco and Francke, Gero and Hiecker, S. and Plescher, Engelbert and Sch{\"o}ngarth, Sarah and Dachwald, Bernd and Digel, Ilya and Artmann, Gerhard and Eliseev, D. and Heinen, D. and Scholz, F. and Wiebusch, C. and Macht, S. and Bestmann, U. and Reineking, T. and Zetzsche, C. and Schill, K. and F{\"o}rstner, R. and Niedermeier, H. and Szumski, A. and Eissfeller, B. and Naumann, U. and Helbing, K.}, title = {Navigation technology for exploration of glacier ice with maneuverable melting probes}, series = {Cold Regions Science and Technology}, journal = {Cold Regions Science and Technology}, number = {123}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0165-232X}, doi = {10.1016/j.coldregions.2015.11.006}, pages = {53 -- 70}, year = {2016}, abstract = {The Saturnian moon Enceladus with its extensive water bodies underneath a thick ice sheet cover is a potential candidate for extraterrestrial life. Direct exploration of such extraterrestrial aquatic ecosystems requires advanced access and sampling technologies with a high level of autonomy. A new technological approach has been developed as part of the collaborative research project Enceladus Explorer (EnEx). The concept is based upon a minimally invasive melting probe called the IceMole. The force-regulated, heater-controlled IceMole is able to travel along a curved trajectory as well as upwards. Hence, it allows maneuvers which may be necessary for obstacle avoidance or target selection. Maneuverability, however, necessitates a sophisticated on-board navigation system capable of autonomous operations. The development of such a navigational system has been the focal part of the EnEx project. The original IceMole has been further developed to include relative positioning based on in-ice attitude determination, acoustic positioning, ultrasonic obstacle and target detection integrated through a high-level sensor fusion. This paper describes the EnEx technology and discusses implications for an actual extraterrestrial mission concept.}, language = {en} } @article{Laack2014, author = {Laack, Walter van}, title = {Nature is much smarter than expected: the Genetic Code is not degenerate}, series = {American journal of humanities and social sciences}, volume = {Vol. 2}, journal = {American journal of humanities and social sciences}, number = {No. 1}, issn = {2329-0781 (Print) ; 2329-079X (Online)}, pages = {10 -- 12}, year = {2014}, abstract = {In any books about genetics it can still today be read that our genetic code is called "degenerate" because it is still believed that 43 = 64 triplets encode the 20 essential amino acids. Indeed we have to assume the inverse law, what means that 34 = 81 exact code positions are really effective for our genetic code and encode the amino acids, compiled to proteins. This very important discovery leads to two completely new results that are limits-overlooking: 1) 34 (=81) genetic code positions mean exactly the same number as there are stable and naturally existing chemical elements in our universe. This famous argument should now lead to some alternative, as well as new fundamental conclusions about our existence. 2) A genetic code positioning system shows that nature is much smarter than expected: mutations are made less dangerous than believed, because they won't be that easily able any more to cause severe damages in the protein-synthesis. This should also lead to some alternative views upon evolution of life.}, language = {en} } @inproceedings{O'HerasDigelTemizArtmann2009, author = {O\'Heras, Carlos and Digel, Ilya and Temiz Artmann, Ayseg{\"u}l}, title = {Nanostructured carbon-based column for LPS/protein adsorption : [abstract]}, year = {2009}, abstract = {The absence of a general method for endotoxin removal from liquid interfaces gives an opportunity to find new methods and materials to overcome this gap. Activated nanostructured carbon is a promising material that showed good adsorption properties due to its vast pore network and high surface area. The aim of this study is to find the adsorption rates for a carboneous material produced at different temperatures, as well as to reveal possible differences between the performance of the material for each of the adsorbates used during the study (hemoglobin, serum albumin and lipopolysaccharide, LPS).}, subject = {Kohlenstofffaser}, language = {en} }