@article{KraffBitzDammannetal.2010, author = {Kraff, Oliver and Bitz, Andreas and Dammann, Philipp and Ladd, Susanne C. and Ladd, Mark E. and Quick, Harald H.}, title = {An eight-channel transmit/receive multipurpose coil for musculoskeletal MR imaging at 7 T}, series = {Medical Physics}, volume = {37}, journal = {Medical Physics}, number = {12}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2473-4209}, doi = {10.1118/1.3517176}, pages = {6368 -- 6376}, year = {2010}, abstract = {Purpose: MRI plays a leading diagnostic role in assessing the musculoskeletal (MSK) system and is well established for most questions at clinically used field strengths (up to 3 T). However, there are still limitations in imaging early stages of cartilage degeneration, very fine tendons and ligaments, or in locating nerve lesions, for example. 7 T MRI of the knee has already received increasing attention in the current published literature, but there is a strong need to develop new radiofrequency (RF) coils to assess more regions of the MSK system. In this work, an eight-channel transmit/receive RF array was built as a multipurpose coil for imaging some of the thus far neglected regions. An extensive coil characterization protocol and first in vivo results of the human wrist, shoulder, elbow, knee, and ankle imaged at 7 T will be presented. Methods: Eight surface loop coils with a dimension ofurn:x-wiley:00942405:media:mp7176:mp7176-math-0001 were machined from FR4 circuit board material. To facilitate easy positioning, two coil clusters, each with four loop elements, were combined to one RF transmit/receive array. An overlapped and shifted arrangement of the coil elements was chosen to reduce the mutual inductance between neighboring coils. A phantom made of body-simulating liquid was used for tuning and matching on the bench. Afterward, the S-parameters were verified on a human wrist, elbow, and shoulder. For safety validation, a detailed compliance test was performed including full wave simulations of the RF field distribution and the corresponding specific absorption rate (SAR) for all joints. In vivo images of four volunteers were assessed with gradient echo and spin echo sequences modified to obtain optimal image contrast, full anatomic coverage, and the highest spatial resolution within a reasonable acquisition time. The performance of the RF coil was additionally evaluated by in vivo B1 mapping. Results: A comparison of B1 per unit power, flip angle distribution, and anatomic images showed a fairly homogeneous excitation for the smaller joints (elbow, wrist, and ankle), while for the larger joints, the shoulder and especially the knee, B1 inhomogeneities and limited penetration depth were more pronounced. However, the greater part of the shoulder joint could be imaged.In vivo images rendered very fine anatomic details such as fascicles of the median nerve and the branching of the nerve bundles. High-resolution images of cartilage, labrum, and tendons could be acquired. Additionally, turbo spin echo (TSE) and inversion recovery sequences performed very well. Conclusions: This study demonstrates that the concept of two four-channel transmit/receive RF arrays can be used as a multipurpose coil for high-resolutionin vivo MR imaging of the musculoskeletal system at 7 T. Not only gradient echo but also typical clinical and SAR-intensive sequences such as STIR and TSE performed well. Imaging of small structures and peripheral nerves could in particular benefit from this technique.}, language = {en} } @article{SchlamannYoonMaderwaldetal.2010, author = {Schlamann, Marc and Yoon, Min-Suk and Maderwald, Stefan and Pietrzyk, Thomas and Bitz, Andreas and Gerwig, Marcus and Forsting, Michael and Ladd, Susanne C. and Ladd, Mark E. and Kastrup, Oliver}, title = {Short term effects of magnetic resonance imaging on excitability of the motor cortex at 1.5T and 7T}, series = {Academic Radiology}, volume = {17}, journal = {Academic Radiology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1076-6332}, doi = {10.1016/j.acra.2009.10.004}, pages = {277 -- 281}, year = {2010}, abstract = {Rationale and Objectives The increasing spread of high-field and ultra-high-field magnetic resonance imaging (MRI) scanners has encouraged new discussion of the safety aspects of MRI. Few studies have been published on possible cognitive effects of MRI examinations. The aim of this study was to examine whether changes are measurable after MRI examinations at 1.5 and 7 T by means of transcranial magnetic stimulation (TMS). Materials and Methods TMS was performed in 12 healthy, right-handed male volunteers. First the individual motor threshold was specified, and then the cortical silent period (SP) was measured. Subsequently, the volunteers were exposed to the 1.5-T MRI scanner for 63 minutes using standard sequences. The MRI examination was immediately followed by another TMS session. Fifteen minutes later, TMS was repeated. Four weeks later, the complete setting was repeated using a 7-T scanner. Control conditions included lying in the 1.5-T scanner for 63 minutes without scanning and lying in a separate room for 63 minutes. TMS was performed in the same way in each case. For statistical analysis, Wilcoxon's rank test was performed. Results Immediately after MRI exposure, the SP was highly significantly prolonged in all 12 subjects at 1.5 and 7 T. The motor threshold was significantly increased. Fifteen minutes after the examination, the measured value tended toward normal again. Control conditions revealed no significant differences. Conclusion MRI examinations lead to a transient and highly significant alteration in cortical excitability. This effect does not seem to depend on the strength of the static magnetic field.}, language = {en} } @article{SchlamannVoigtMaderwaldetal.2010, author = {Schlamann, Marc and Voigt, Melanie A. and Maderwald, Stefan and Bitz, Andreas and Kraff, Oliver and Ladd, Susanne C. and Ladd, Mark E. and Forsting, Michael and Wilhelm, Hans}, title = {Exposure to high-field MRI does not affect cognitive function}, series = {Journal of Magnetic Resonance Imaging}, volume = {31}, journal = {Journal of Magnetic Resonance Imaging}, number = {5}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2586}, doi = {10.1002/jmri.22065}, pages = {1061 -- 1066}, year = {2010}, abstract = {Purpose To assess potential cognitive deficits under the influence of static magnetic fields at various field strengths some studies already exist. These studies were not focused on attention as the most vulnerable cognitive function. Additionally, mostly no magnetic resonance imaging (MRI) sequences were performed. Materials and Methods In all, 25 right-handed men were enrolled in this study. All subjects underwent one MRI examination of 63 minutes at 1.5 T and one at 7 T within an interval of 10 to 30 days. The order of the examinations was randomized. Subjects were referred to six standardized neuropsychological tests strictly focused on attention immediately before and after each MRI examination. Differences in neuropsychological variables between the timepoints before and after each MRI examination were assessed and P-values were calculated Results Only six subtests revealed significant differences between pre- and post-MRI. In these tests the subjects achieved better results in post-MRI testing than in pre-MRI testing (P = 0.013-0.032). The other tests revealed no significant results. Conclusion The improvement in post-MRI testing is only explicable as a result of learning effects. MRI examinations, even in ultrahigh-field scanners, do not seem to have any persisting influence on the attention networks of human cognition immediately after exposure.}, language = {en} } @article{UmutluOrzadaKinneretal.2011, author = {Umutlu, Lale and Orzada, Stephan and Kinner, Sonja and Maderwald, Stefan and Bronte, Irina and Bitz, Andreas and Kraff, Oliver and Ladd, Susanne C. and Antoch, Gerald and Ladd, Mark E. and Quick, Harald H. and Lauenstein, Thomas C.}, title = {Renal imaging at 7 Tesla: preliminary results}, series = {European Radiology}, volume = {21}, journal = {European Radiology}, number = {4}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084}, pages = {841 -- 849}, year = {2011}, abstract = {Objective To investigate the feasibility of 7T MR imaging of the kidneys utilising a custom-built 8-channel transmit/receive radiofrequency body coil. Methods In vivo unenhanced MR was performed in 8 healthy volunteers on a 7T whole-body MR system. After B0 shimming the following sequences were obtained: 1) 2D and 3D spoiled gradient-echo sequences (FLASH, VIBE), 2) T1-weighted 2D in and opposed phase 3) True-FISP imaging and 4) a T2-weighted turbo spin echo (TSE) sequence. Visual evaluation of the overall image quality was performed by two radiologists. Results Renal MRI at 7T was feasible in all eight subjects. Best image quality was found using T1-weighted gradient echo MRI, providing high anatomical details and excellent conspicuity of the non-enhanced vasculature. With successful shimming, B1 signal voids could be effectively reduced and/or shifted out of the region of interest in most sequence types. However, T2-weighted TSE imaging remained challenging and strongly impaired because of signal heterogeneities in three volunteers. Conclusion The results demonstrate the feasibility and diagnostic potential of dedicated 7T renal imaging. Further optimisation of imaging sequences and dedicated RF coil concepts are expected to improve the acquisition quality and ultimately provide high clinical diagnostic value.}, language = {en} } @article{OrzadaBitzSchaeferetal.2011, author = {Orzada, Stephan and Bitz, Andreas and Sch{\"a}fer, Lena C. and Ladd, Susanne C. and Ladd, Mark E. and Maderwald, Stefan}, title = {Open design eight-channel transmit/receive coil for high-resolution and real-time ankle imaging at 7 T}, series = {Medical Physics}, volume = {38}, journal = {Medical Physics}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {2473-4209}, doi = {10.1118/1.3553399}, pages = {1162 -- 1167}, year = {2011}, abstract = {Purpose: At 1.5 T, real-time MRI of joint movement has been shown to be feasible. However, 7 T, provides higher SNR and thus an improved potential for parallel imaging acceleration. The purpose of this work was to build an open, U-shaped eight-channel transmit/receive microstrip coil for 7 T MRI to enable high-resolution and real-time imaging of the moving ankle joint. Methods: A U-shaped eight-channel transmit/receive array for the human ankle was built.urn:x-wiley:00942405:mp3399:equation:mp3399-math-0001-parameters and urn:x-wiley:00942405:mp3399:equation:mp3399-math-0002-factor were measured. SAR calculations of different ankle postures were performed to ensure patient safety. Inhomogeneities in the transmit field consequent to the open design were compensated for by the use of static RF shimming. High-resolution and real-time imaging was performed in human volunteers. Results: The presented array showed good performance with regard to patient comfort and image quality. High acceleration factors of up to 4 are feasible without visible acceleration artifacts. Reasonable image homogeneity was achieved with RF shimming. Conclusions: Open, noncylindrical designs for transmit/receive coils are practical at 7 T and real-time imaging of the moving joint is feasible with the presented coil design.}, language = {en} } @article{UmutluBitzMaderwaldetal.2013, author = {Umutlu, Lale and Bitz, Andreas and Maderwald, Stefan and Orzada, Stephan and Kinner, Sonja and Kraff, Oliver and Brote, Irina and Ladd, Susanne C. and Schroeder, Tobias and Forsting, Michael}, title = {Contrast-enhanced ultra-high-field liver MRI: a feasibility trial}, series = {European Journal of Radiology}, volume = {82}, journal = {European Journal of Radiology}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0720-048X}, doi = {10.1016/j.ejrad.2011.07.004}, pages = {760 -- 767}, year = {2013}, language = {en} } @article{TheysohnKraffEilersetal.2014, author = {Theysohn, Jens M. and Kraff, Oliver and Eilers, Kristina and Andrade, Dorian and Gerwig, Marcus and Timmann, Dagmar and Schmitt, Franz and Ladd, Mark E. and Ladd, Susanne C. and Bitz, Andreas}, title = {Vestibular effects of a 7 Tesla MRI examination compared to 1.5 T and 0 T in healthy volunteers}, series = {PLoS one}, volume = {9}, journal = {PLoS one}, number = {3}, publisher = {PLOS}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0092104}, pages = {e92104}, year = {2014}, abstract = {Ultra-high-field MRI (7 Tesla (T) and above) elicits more temporary side-effects compared to 1.5 T and 3 T, e.g. dizziness or "postural instability" even after exiting the scanner. The current study aims to assess quantitatively vestibular performance before and after exposure to different MRI scenarios at 7 T, 1.5 T and 0 T. Sway path and body axis rotation (Unterberger's stepping test) were quantitatively recorded in a total of 46 volunteers before, 2 minutes after, and 15 minutes after different exposure scenarios: 7 T head MRI (n = 27), 7 T no RF (n = 22), 7 T only B₀ (n = 20), 7 T in \& out B₀ (n = 20), 1.5 T no RF (n = 20), 0 T (n = 15). All exposure scenarios lasted 30 minutes except for brief one minute exposure in 7 T in \& out B₀. Both measures were documented utilizing a 3D ultrasound system. During sway path evaluation, the experiment was repeated with eyes both open and closed. Sway paths for all long-lasting 7 T scenarios (normal, no RF, only B₀) with eyes closed were significantly prolonged 2 minutes after exiting the scanner, normalizing after 15 minutes. Brief exposure to 7 T B₀ or 30 minutes exposure to 1.5 T or 0 T did not show significant changes. End positions after Unterberger's stepping test were significantly changed counter-clockwise after all 7 T scenarios, including the brief in \& out B₀ exposure. Shorter exposure resulted in a smaller alteration angle. In contrast to sway path, reversal of changes in body axis rotation was incomplete after 15 minutes. 1.5 T caused no rotational changes. The results show that exposure to the 7 Tesla static magnetic field causes only a temporary dysfunction or "over-compensation" of the vestibular system not measurable at 1.5 or 0 Tesla. Radiofrequency fields, gradient switching, and orthostatic dysregulation do not seem to play a role.}, language = {en} } @article{NoureddineBitzLaddetal.2015, author = {Noureddine, Yacine and Bitz, Andreas and Ladd, Mark E. and Th{\"u}rling, Markus and Ladd, Susanne C. and Schaefers, Gregor and Kraff, Oliver}, title = {Experience with magnetic resonance imaging of human subjects with passive implants and tattoos at 7 T: a retrospective study}, series = {Magnetic Resonance Materials in Physics, Biology and Medicine}, volume = {28}, journal = {Magnetic Resonance Materials in Physics, Biology and Medicine}, number = {6}, publisher = {Springer}, address = {Berlin}, issn = {1352-8661}, doi = {10.1007/s10334-015-0499-y}, pages = {577 -- 590}, year = {2015}, language = {en} }