@incollection{NiemuellerEwertReuteretal.2014, author = {Niem{\"u}ller, Tim and Ewert, Daniel and Reuter, Sebastian and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {RoboCup logistics league sponsored by festo: A competitive factory automation testbed}, series = {RoboCup 2013: Robot World Cup XVII : Eindhoven; Netherlands; 1 July 2013 through 1 July 2013. (Lecture notes in computer science ; 8371)}, booktitle = {RoboCup 2013: Robot World Cup XVII : Eindhoven; Netherlands; 1 July 2013 through 1 July 2013. (Lecture notes in computer science ; 8371)}, publisher = {Springer}, address = {Berlin}, organization = {RoboCup International Symposium <17, 2013, Eindhoven>}, isbn = {978-3-662-44467-2 (Print) 978-3-662-44468-9 (Online)}, pages = {336 -- 347}, year = {2014}, abstract = {A new trend in automation is to deploy so-called cyber-physical systems (CPS) which combine computation with physical processes. The novel RoboCup Logistics League Sponsored by Festo (LLSF) aims at such CPS logistic scenarios in an automation setting. A team of robots has to produce products from a number of semi-finished products which they have to machine during the game. Different production plans are possible and the robots need to recycle scrap byproducts. This way, the LLSF is a very interesting league offering a number of challenging research questions for planning, coordination, or communication in an application-driven scenario. In this paper, we outline the objectives of the LLSF and present steps for developing the league further towards a benchmark for logistics scenarios for CPS. As a major milestone we present the new automated referee system which helps in governing the game play as well as keeping track of the scored points in a very complex factory scenario.}, language = {en} } @incollection{NiemuellerReuterEwertetal.2015, author = {Niemueller, Tim and Reuter, Sebastian and Ewert, Daniel and Ferrein, Alexander and Jeschke, Sabina and Lakemeyer, Gerhard}, title = {Decisive Factors for the Success of the Carologistics RoboCup Team in the RoboCup Logistics League 2014}, series = {RoboCup 2014: Robot World Cup XVIII}, booktitle = {RoboCup 2014: Robot World Cup XVIII}, publisher = {Springer}, isbn = {978-3-319-18615-3}, pages = {155 -- 167}, year = {2015}, language = {en} } @incollection{GoeckelSchifferWagneretal.2015, author = {Goeckel, Tom and Schiffer, Stefan and Wagner, Hermann and Lakemeyer, Gerhard}, title = {The Video Conference Tool Robot ViCToR}, series = {Intelligent Robotics and Applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II}, booktitle = {Intelligent Robotics and Applications : 8th International Conference, ICIRA 2015, Portsmouth, UK, August 24-27, 2015, Proceedings, Part II}, publisher = {Springer}, isbn = {978-3-319-22876-1}, doi = {10.1007/978-3-319-22876-1_6}, pages = {61 -- 73}, year = {2015}, abstract = {We present a robotic tool that autonomously follows a conversation to enable remote presence in video conferencing. When humans participate in a meeting with the help of video conferencing tools, it is crucial that they are able to follow the conversation both with acoustic and visual input. To this end, we design and implement a video conferencing tool robot that uses binaural sound source localization as its main source to autonomously orient towards the currently talking speaker. To increase robustness of the acoustic cue against noise we supplement the sound localization with a source detection stage. Also, we include a simple onset detector to retain fast response times. Since we only use two microphones, we are confronted with ambiguities on whether a source is in front or behind the device. We resolve these ambiguities with the help of face detection and additional moves. We tailor the system to our target scenarios in experiments with a four minute scripted conversation. In these experiments we evaluate the influence of different system settings on the responsiveness and accuracy of the device.}, language = {en} } @incollection{NiemuellerZwillingLakemeyeretal.2017, author = {Niemueller, Tim and Zwilling, Frederik and Lakemeyer, Gerhard and L{\"o}bach, Matthias and Reuter, Sebastian and Jeschke, Sabina and Ferrein, Alexander}, title = {Cyber-Physical System Intelligence}, series = {Industrial Internet of Things}, booktitle = {Industrial Internet of Things}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-42559-7}, doi = {10.1007/978-3-319-42559-7_17}, pages = {447 -- 472}, year = {2017}, abstract = {Cyber-physical systems are ever more common in manufacturing industries. Increasing their autonomy has been declared an explicit goal, for example, as part of the Industry 4.0 vision. To achieve this system intelligence, principled and software-driven methods are required to analyze sensing data, make goal-directed decisions, and eventually execute and monitor chosen tasks. In this chapter, we present a number of knowledge-based approaches to these problems and case studies with in-depth evaluation results of several different implementations for groups of autonomous mobile robots performing in-house logistics in a smart factory. We focus on knowledge-based systems because besides providing expressive languages and capable reasoning techniques, they also allow for explaining how a particular sequence of actions came about, for example, in the case of a failure.}, language = {en} }