@article{HoltrupSadeghfamHeuermannetal.2014, author = {Holtrup, S. and Sadeghfam, Arash and Heuermann, Holger and Awakowicz, P.}, title = {Characterization and optimization technique for microwave-driven high-intensity discharge lamps using hot S-parameters}, series = {IEEE transactions on microwave theories and techniques}, volume = {62}, journal = {IEEE transactions on microwave theories and techniques}, number = {10}, publisher = {IEEE}, address = {New York}, issn = {0018-9480}, doi = {10.1109/TMTT.2014.2342652}, pages = {2471 -- 2480}, year = {2014}, abstract = {High-intensity discharge lamps can be driven by radio-frequency signals in the ISM frequency band at 2.45 GHz, using a matching network to transform the impedance of the plasma to the source impedance. To achieve an optimal operating condition, a good characterization of the lamp in terms of radio frequency equivalent circuits under operating conditions is necessary, enabling the design of an efficient matching network. This paper presents the characterization technique for such lamps and presents the design of the required matching network. For the characterization, a high-intensity discharge lamp was driven by a monofrequent large signal at 2.45 GHz, whereas a frequency sweep over 300 MHz was performed across this signal to measure so-called small-signal hot S-parameters using a vector network analyzer. These parameters are then used as an equivalent load in a circuit simulator to design an appropriate matching network. Using the measured data as a black-box model in the simulation results in a quick and efficient method to simulate and design efficient matching networks in spite of the complex plasma behavior. Furthermore, photometric analysis of high-intensity discharge lamps are carried out, comparing microwave operation to conventional operation.}, language = {en} } @article{AlhwarinFerreinScholl2014, author = {Alhwarin, Faraj and Ferrein, Alexander and Scholl, Ingrid}, title = {IR stereo kinect: improving depth images by combining structured light with IR stereo}, pages = {1 -- 9}, year = {2014}, language = {en} } @book{Hoever2014, author = {Hoever, Georg}, title = {Vorkurs Mathematik : Theorie und Aufgaben mit vollst{\"a}ndig durchgerechneten L{\"o}sungen. - (Springer-Lehrbuch)}, publisher = {Springer Spektrum}, address = {Berlin [u.a.]}, isbn = {978-3-642-54870-3 (Druckausg.)}, pages = {X, 292 S. : graph. Darst.}, year = {2014}, language = {de} } @misc{NoetzoldBragardFinketal.2014, author = {N{\"o}tzold, K. and Bragard, Michael and Fink, K. and Griessel, R. and Wegener, R.}, title = {Cascaded H-bridge converter with transformer based cell power balancing in each voltage level : [Patentschrift]}, publisher = {Europ{\"a}isches Patentamt / United States Patent and Trademark Office [u.a.]}, address = {Den Haag / Alexandria, VA}, pages = {16 S. : graph. Darst.}, year = {2014}, language = {en} } @book{Muehl2014, author = {M{\"u}hl, Thomas}, title = {Einf{\"u}hrung in die elektrische Messtechnik : Grundlagen, Messverfahren, Anwendungen. - 4. aktualisierte u. erw. Aufl.}, edition = {4., aktualisierte u. erw. Aufl.}, publisher = {Springer}, address = {Wiesbaden}, isbn = {978-3-8348-2063-1 ; 978-3-8348-0899-8}, pages = {XI, 320 S.}, year = {2014}, language = {de} } @inproceedings{NeumannFerreinKallweitetal.2014, author = {Neumann, Tobias and Ferrein, Alexander and Kallweit, Stephan and Scholl, Ingrid}, title = {Towards a mobile mapping robot for underground mines}, series = {7th Conference of Robotics and Mechatronics : RobMech 2014 : 27th and 28th Nov. 2014, Cape Town}, booktitle = {7th Conference of Robotics and Mechatronics : RobMech 2014 : 27th and 28th Nov. 2014, Cape Town}, organization = {Conference of Robotics and Mechatronics <7, 2014, Cape Town, South Africa>}, pages = {1 -- 6}, year = {2014}, language = {en} } @incollection{AlhwarinFerreinScholl2014, author = {Alhwarin, Faraj and Ferrein, Alexander and Scholl, Ingrid}, title = {IR stereo kinect: improving depth images by combining structured light with IR stereo}, series = {PRICAI 2014: Trends in artificial intelligence : 13th Pacific Rim International Conference on Artificial Intelligence : Gold Coast, QLD, Australia, December 1-5, 2014 : proceedings. (Lecture notes in computer science ; vol. 8862)}, booktitle = {PRICAI 2014: Trends in artificial intelligence : 13th Pacific Rim International Conference on Artificial Intelligence : Gold Coast, QLD, Australia, December 1-5, 2014 : proceedings. (Lecture notes in computer science ; vol. 8862)}, publisher = {Springer}, address = {M{\"u}nchen}, isbn = {978-3-319-13559-5 (Print) ; 978-3-319-13560-1 (E-Book)}, doi = {10.1007/978-3-319-13560-1_33}, pages = {409 -- 421}, year = {2014}, abstract = {RGB-D sensors such as the Microsoft Kinect or the Asus Xtion are inexpensive 3D sensors. A depth image is computed by calculating the distortion of a known infrared light (IR) pattern which is projected into the scene. While these sensors are great devices they have some limitations. The distance they can measure is limited and they suffer from reflection problems on transparent, shiny, or very matte and absorbing objects. If more than one RGB-D camera is used the IR patterns interfere with each other. This results in a massive loss of depth information. In this paper, we present a simple and powerful method to overcome these problems. We propose a stereo RGB-D camera system which uses the pros of RGB-D cameras and combine them with the pros of stereo camera systems. The idea is to utilize the IR images of each two sensors as a stereo pair to generate a depth map. The IR patterns emitted by IR projectors are exploited here to enhance the dense stereo matching even if the observed objects or surfaces are texture-less or transparent. The resulting disparity map is then fused with the depth map offered by the RGB-D sensor to fill the regions and the holes that appear because of interference, or due to transparent or reflective objects. Our results show that the density of depth information is increased especially for transparent, shiny or matte objects.}, language = {en} } @inproceedings{GebhardtRitzSiekmannetal.2014, author = {Gebhardt, Andreas and Ritz, Thomas and Siekmann, Kirsten and Wallenborn, Ramona}, title = {Additive manufacturing businesses in the process chain of individualized mass products}, series = {DDMC 2014 : Proceedings of the Fraunhofer Direct Digital Manufacturing Conference}, booktitle = {DDMC 2014 : Proceedings of the Fraunhofer Direct Digital Manufacturing Conference}, editor = {Demmer, Axel}, publisher = {Fraunhofer}, address = {Stuttgart}, isbn = {978-3-8396-9128-1 (E-Book)}, year = {2014}, language = {en} } @inproceedings{RitzIzquierdoTelloDamm2014, author = {Ritz, Thomas and Izquierdo Tello, C{\´e}sar and Damm, Sebastian}, title = {Connecting a pedelec to the cloud as basis for gamification in multi modal mobility planning}, series = {MobileCloud 2014 : 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering Oxford, United Kingdom 7-10 April 2014}, booktitle = {MobileCloud 2014 : 2nd IEEE International Conference on Mobile Cloud Computing, Services, and Engineering Oxford, United Kingdom 7-10 April 2014}, publisher = {IEEE Service Center}, address = {Piscataway, NJ}, isbn = {978-1-4799-2504-9}, doi = {10.1109/MobileCloud.2014.25}, pages = {101 -- 108}, year = {2014}, language = {en} } @inproceedings{OegunKlingHeuermannetal.2014, author = {{\"O}gun, Celal Mohan and Kling, Rainer and Heuermann, Holger and Gr{\"a}ser, Ulrich and Schopp, Christoph}, title = {Elektrodenlose quecksilberfreie Niederdrucklampen betrieben mit Mikrowellen}, series = {Licht 2014 [Elektronische Ressource] : Den Haag, Holland ; 21. Gemeinschaftstagung, 21. bis 24. September 2014 ; Tagungsband}, booktitle = {Licht 2014 [Elektronische Ressource] : Den Haag, Holland ; 21. Gemeinschaftstagung, 21. bis 24. September 2014 ; Tagungsband}, publisher = {Nederlandse Stichting voor Verlichtingskunde}, address = {Ede}, pages = {[Elektronische Ressource]}, year = {2014}, language = {de} }