@article{StreunBrandenburgLarueetal.2001, author = {Streun, M. and Brandenburg, G. and Larue, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Pulse recording by free-running sampling}, series = {IEEE Transactions on Nuclear Science}, volume = {48}, journal = {IEEE Transactions on Nuclear Science}, number = {3}, isbn = {0018-9499}, pages = {524 -- 526}, year = {2001}, abstract = {Pulses from a position-sensitive photomultiplier (PS-PMT) are recorded by free-running ADCs at a sampling rate of 40 MHz. A four-channel acquisition board has been developed which is equipped with four 12-bit ADCs connected to one field programmable gate array (FPGA). The FPGA manages data acquisition and the transfer to the host computer. It can also work as a digital trigger, so a separate hardware trigger can be omitted. The method of free-running sampling provides a maximum of information, besides the pulse charge and amplitude also pulse shape and starting time are contained in the sampled data. This information is crucial for many tasks such as distinguishing between different scintillator materials, determination of radiation type, pile-up recovery, coincidence detection or time-of-flight applications. The absence of an analog integrator allows very high count rates to be dealt with. Since this method is to be employed in positron emission tomography (PET), the position of an event is also important. The simultaneous readout of four channels allows localization by means of center-of-gravity weighting. First results from a test setup with LSO scintillators coupled to the PS-PMT are presented here}, language = {en} } @article{HeinrichBlumBussmannetal.2002, author = {Heinrich, U. and Blum, A. and Bussmann, N. and Engels, R. and Kemmerling, G. and Weber, S. and Ziemons, Karl}, title = {Statistical studies on the light output and energy resolution of small LSO single crystals with different surface treatments combined with various reflector materials}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {486}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {1-2}, issn = {0168-9002}, pages = {60 -- 66}, year = {2002}, abstract = {The optimization of light output and energy resolution of scintillators is of special interest for the development of high resolution and high sensitivity PET. The aim of this work is to obtain statistically reliable results concerning optimal surface treatment of scintillation crystals and the selection of reflector material. For this purpose, raw, mechanically polished and etched LSO crystals (size 2×2×10 mm3) were combined with various reflector materials (Teflon tape, Teflon matrix, BaSO4) and exposed to a 22Na source. In order to ensure the statistical reliability of the results, groups of 10 LSO crystals each were measured for all combinations of surface treatment and reflector material. Using no reflector material the light output increased up to 551±35\% by mechanical polishing the surface compared to 100±5\% for raw crystals. Etching the surface increased the light output to 441±29\%. The untreated crystals had an energy resolution of 24.6±4.0\%. By mechanical polishing the surface it was possible to achieve an energy resolution of 13.2±0.8\%, by etching of 14.8±0.7\%. In combination with BaSO4 as reflector material the maximum increase of light output has been established to 932±57\% for mechanically polished and 895±61\% for etched crystals. The combination with BaSO4 also caused the best improvement of the energy resolution up to 11.6±0.2\% for mechanically polished and 12.2±0.3\% for etched crystals. Relating to the light output there was no significant statistical difference between the two surface treatments in combination with BaSO4. In contrast to this, the statistical results of the energy resolution have shown the combination of mechanical polishing and BaSO4 as the optimum.}, language = {en} } @article{StreunBrandenburgLarueetal.2002, author = {Streun, M. and Brandenburg, G. and Larue, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {A PET system with free running ADCs}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {486}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {1-2}, issn = {0168-9002}, pages = {18 -- 21}, year = {2002}, abstract = {A small PET system has been built up with two multichannel photomultipliers, which are attached to a matrix of 64 single LSO crystals each. The signal from each multiplier is being sampled continuously by a 12 bit ADC at a sampling frequency of 40 MHz. In case of a scintillation pulse a subsequent FPGA sends the corresponding set of samples together with the channel information and a time mark to the host computer. The data transfer is performed with a rate of 20 MB/s. On the host all necessary information is extracted from the data. The pulse energy is determined, coincident events are detected and multiple hits within one matrix can be identified. In order to achieve a narrow time window the pulse starting time is refined further than the resolution of the time mark (=25 ns) would allow. This is possible by interpolating between the pulse samples. First data obtained from this system will be presented. The system is part of developments for a much larger system and has been created to study the feasibility and performance of the technique and the hardware architecture.}, language = {en} } @article{StreunBrandenburgLarueetal.2002, author = {Streun, M. and Brandenburg, G. and Larue, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Coincidence detection by digital processing of free-running sampled pulses}, series = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, volume = {487}, journal = {Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment}, number = {3}, isbn = {0168-9002}, pages = {530 -- 534}, year = {2002}, abstract = {Coincident events in two scintillator crystals coupled to photomultipliers (PMT) are detected by processing just the digital data of the recorded pulses. For this purpose the signals from both PMTs are continuously sampled by free-running ADCs at a sampling rate of 40 MHz. For each sampled pulse the starting time is determined by processing the pulse data. Even a fairly simple interpolating algorithm results in a FWHM of about 2 ns.}, language = {en} } @article{KhodaverdiPaulySchroderetal.2002, author = {Khodaverdi, M. and Pauly, F. and Schroder, G. and Ziemons, Karl and Sievering, R. and Halling, H.}, title = {Preliminary studies of a micro-CT for a combined small animal PET/CT scanner}, series = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, issn = {1082-3654}, pages = {1605 -- 1606}, year = {2002}, abstract = {We are developing an X-ray computed tomography (CT) system which will be combined with a high resolution animal PET system. This permits acquisition of both molecular and anatomical images in a single machine. In particular the CT will also be utilized for the quantification of the animal PET data by providing accurate data for attenuation correction. A first prototype has been built using a commercially available plane silicon diode detector. A cone-beam reconstruction provides the images using the Feldkamp algorithm. First measurements with this system have been performed on a mouse. It could be shown that the CT setup fulfils all demands for a high quality image of the skeleton of the mouse. It is also suited for soft tissue measurements. To improve contrast and resolution and to acquire the X-ray energy further development of the system, especially the use of semiconductor detectors and iterative reconstruction algorithms are planned.}, language = {en} } @article{StreunBrandenburgLarueetal.2002, author = {Streun, M. and Brandenburg, G. and Larue, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {A PET system based on data processing of free-running sampled pulses}, series = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 2}, journal = {2001 IEEE Nuclear Science Symposium Conference Record, Vol. 2}, issn = {1082-3654}, pages = {693 -- 694}, year = {2002}, abstract = {Within the developments for the Crystal Clear small animal PET project (CLEARPET) a dual head PET system has been established. The basic principle is the early digitization of the detector pulses by free running ADCs. The determination of the γ-energy and also the coincidence detection is performed by data processing of the sampled pulses on the host computer. Therefore a time mark is attached to each pulse identifying the current cycle of the 40 MHz sampling clock. In order to refine the time resolution the pulse starting time is interpolated from the samples of the pulse rise. The detector heads consist of multichannel PMTs with a single LSO scintillator crystal coupled to each channel. For each PMT only one ADC is required. The position of an event is obtained separately from trigger signals generated for each single channel. An FPGA is utilized for pulse buffering, generation of the time mark and for the data transfer to the host via a fast I/O-interface.}, language = {en} } @article{HeinrichsPietrzykZiemons2003, author = {Heinrichs, U. and Pietrzyk, U. and Ziemons, Karl}, title = {Design optimization of the PMT-ClearPET prototypes based on simulation studies with GEANT3}, series = {IEEE Transactions on Nuclear Science}, volume = {50}, journal = {IEEE Transactions on Nuclear Science}, number = {5}, isbn = {0018-9499}, pages = {1428 -- 1432}, year = {2003}, abstract = {Within the Crystal Clear Collaboration (CCC), four centers are developing second generation high performance small animal positron emission tomography (PET) scanners for different kinds of animals and medical applications. The first prototypes are photomultiplier tube (PMT)-based systems including depth of interaction (DOI) detection by using a phoswich layer of lutetium oxyorthosilicate (LSO) and lutetium yttrium aluminum perovskite (LuYAP). The aim of these simulation studies is to optimize sensitivity and spatial resolution of given designs, which vary in fields of view (FOVs) caused by different detector configurations (ring/octagon) and sizes. For this purpose the simulation tool GEANT3 (CERN, Geneva, Switzerland) was used.}, language = {en} } @article{StreunBrandenburgLarueetal.2003, author = {Streun, M. and Brandenburg, G. and Larue, H. and Saleh, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Pulse shape discrimination of LSO and LuYAP scintillators for depth of interaction detection in PET}, series = {2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, journal = {2002 IEEE Nuclear Science Symposium Conference Record, Vol. 3}, issn = {1082-3654}, pages = {1636 -- 1639}, year = {2003}, abstract = {A feasible way to gain the depth of interaction information in a PET scanner is the use of phoswich detectors. In general the layer of interaction is identified front the pulse shape of the corresponding scintillator material. In this work pulses from LSO and LuYAP crystals were investigated in order to find a practical method of distinguishing. It turned out that such a pulse processing could he kept simple due to an additional slow component in the light decay of the LuYAP pulse. At the same time the short decay time guarantees that the major amount of the light output is still collected within a short pulse recording time.}, language = {en} } @article{StreunBrandenburgLarueetal.2003, author = {Streun, M. and Brandenburg, G. and Larue, H. and Saleh, H. and Zimmermann, E. and Ziemons, Karl and Halling, H.}, title = {Pulse shape discrimination of LSO and LuYAP scintillators for depth of interaction detection in PET}, series = {IEEE Transactions on Nuclear Science}, volume = {50}, journal = {IEEE Transactions on Nuclear Science}, number = {3}, isbn = {0018-9499}, pages = {344 -- 347}, year = {2003}, abstract = {A feasible way to gain the depth of interaction information in a positron emission tomography scanner is the use of phoswich detectors. In general, the layer of interaction is identified from the pulse shape of the corresponding scintillator material. In this work, pulses from LSO and LuYAP crystals were investigated in order to find a practical method of distinguishing. It turned out that such a pulse processing could be kept simple because of an additional slow component in the light decay of the LuYAP pulse. At the same time, the short decay time guarantees that the major amount of the light output is still collected within a short pulse recording time.}, language = {en} } @article{ZiemonsAchtenAuffrayetal.2004, author = {Ziemons, Karl and Achten, R. and Auffray, E. and M{\"u}ller-Veggian, Mattea}, title = {The ClearPET™ neuro scanner: a dedicated LSO/LuYAP phoswich small animal PET scanner}, series = {2004 IEEE Nuclear Science Symposium conference record : Nuclear Science Symposium, Medical Imaging Conference ; 16 - 22 October 2004, Rome, Italy ; [including the Symposium on Nuclear Power System (SNPS), 14th Room Temperature Semiconductor X- and Gamma-Ray Detectors Workshop and special focus workshops] / NPSS, Nuclear \& Plasma Sciences Society. Guest ed.: J. Anthony Seibert}, journal = {2004 IEEE Nuclear Science Symposium conference record : Nuclear Science Symposium, Medical Imaging Conference ; 16 - 22 October 2004, Rome, Italy ; [including the Symposium on Nuclear Power System (SNPS), 14th Room Temperature Semiconductor X- and Gamma-Ray Detectors Workshop and special focus workshops] / NPSS, Nuclear \& Plasma Sciences Society. Guest ed.: J. Anthony Seibert}, publisher = {IEEE Operations Center}, address = {Piscataway, NJ}, issn = {1082-3654}, pages = {2430 -- 2433}, year = {2004}, language = {en} }