@article{OehlenschlaegerVolkmarStiefelmaieretal.2024, author = {Oehlenschl{\"a}ger, Katharina and Volkmar, Marianne and Stiefelmaier, Judith and Langsdorf, Alexander and Holtmann, Dirk and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum}, series = {Applied Microbiology and Biotechnology}, volume = {108}, journal = {Applied Microbiology and Biotechnology}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1432-0614}, doi = {10.1007/s00253-023-12981-8}, pages = {10 Seiten}, year = {2024}, abstract = {Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured.}, language = {en} } @article{WindmuellerSchapsZantisetal.2024, author = {Windm{\"u}ller, Anna and Schaps, Kristian and Zantis, Frederik and Domgans, Anna and Taklu, Bereket Woldegbreal and Yang, Tingting and Tsai, Chih-Long and Schierholz, Roland and Yu, Shicheng and Kungl, Hans and Tempel, Hermann and Dunin-Borkowski, Rafal E. and H{\"u}ning, Felix and Hwang, Bing Joe and Eichel, R{\"u}diger-A.}, title = {Electrochemical activation of LiGaO2: implications for ga-doped garnet solid electrolytes in li-metal batteries}, series = {ACS Applied Materials \& Interfaces}, volume = {16}, journal = {ACS Applied Materials \& Interfaces}, number = {30}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {39181-3919}, doi = {10.1021/acsami.4c03729}, pages = {14 Seiten}, year = {2024}, abstract = {Ga-doped Li7La3Zr2O12 garnet solid electrolytes exhibit the highest Li-ion conductivities among the oxide-type garnet-structured solid electrolytes, but instabilities toward Li metal hamper their practical application. The instabilities have been assigned to direct chemical reactions between LiGaO2 coexisting phases and Li metal by several groups previously. Yet, the understanding of the role of LiGaO2 in the electrochemical cell and its electrochemical properties is still lacking. Here, we are investigating the electrochemical properties of LiGaO2 through electrochemical tests in galvanostatic cells versus Li metal and complementary ex situ studies via confocal Raman microscopy, quantitative phase analysis based on powder X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and electron energy loss spectroscopy. The results demonstrate considerable and surprising electrochemical activity, with high reversibility. A three-stage reaction mechanism is derived, including reversible electrochemical reactions that lead to the formation of highly electronically conducting products. The results have considerable implications for the use of Ga-doped Li7La3Zr2O12 electrolytes in all-solid-state Li-metal battery applications and raise the need for advanced materials engineering to realize Ga-doped Li7La3Zr2O12for practical use.}, language = {en} } @article{EichlerBalcBremenetal.2024, author = {Eichler, Fabian and Balc, Nicolae and Bremen, Sebastian and Nink, Philipp}, title = {Investigation of laser powder bed fusion parameters with respect to their influence on the thermal conductivity of 316L samples}, series = {Journal of Manufacturing and Materials Processing}, volume = {8}, journal = {Journal of Manufacturing and Materials Processing}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2504-4494}, doi = {10.3390/jmmp8040166}, pages = {12 Seiten}, year = {2024}, abstract = {The thermal conductivity of components manufactured using Laser Powder Bed Fusion (LPBF), also called Selective Laser Melting (SLM), plays an important role in their processing. Not only does a reduced thermal conductivity cause residual stresses during the process, but it also makes subsequent processes such as the welding of LPBF components more difficult. This article uses 316L stainless steel samples to investigate whether and to what extent the thermal conductivity of specimens can be influenced by different LPBF parameters. To this end, samples are set up using different parameters, orientations, and powder conditions and measured by a heat flow meter using stationary analysis. The heat flow meter set-up used in this study achieves good reproducibility and high measurement accuracy, so that comparative measurements between the various LPBF influencing factors to be tested are possible. In summary, the series of measurements show that the residual porosity of the components has the greatest influence on conductivity. The degradation of the powder due to increased recycling also appears to be detectable. The build-up direction shows no detectable effect in the measurement series.}, language = {en} } @article{KohlKraemerFohryetal.2024, author = {Kohl, Philipp and Kr{\"a}mer, Yoka and Fohry, Claudia and Kraft, Bodo}, title = {Scoping review of active learning strategies and their evaluation environments for entity recognition tasks}, series = {Deep learning theory and applications}, journal = {Deep learning theory and applications}, editor = {Fred, Ana and Hadjali, Allel and Gusikhin, Oleg and Sansone, Carlo}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-66694-0 (online ISBN)}, doi = {10.1007/978-3-031-66694-0_6}, pages = {84 -- 106}, year = {2024}, abstract = {We conducted a scoping review for active learning in the domain of natural language processing (NLP), which we summarize in accordance with the PRISMA-ScR guidelines as follows: Objective: Identify active learning strategies that were proposed for entity recognition and their evaluation environments (datasets, metrics, hardware, execution time). Design: We used Scopus and ACM as our search engines. We compared the results with two literature surveys to assess the search quality. We included peer-reviewed English publications introducing or comparing active learning strategies for entity recognition. Results: We analyzed 62 relevant papers and identified 106 active learning strategies. We grouped them into three categories: exploitation-based (60x), exploration-based (14x), and hybrid strategies (32x). We found that all studies used the F1-score as an evaluation metric. Information about hardware (6x) and execution time (13x) was only occasionally included. The 62 papers used 57 different datasets to evaluate their respective strategies. Most datasets contained newspaper articles or biomedical/medical data. Our analysis revealed that 26 out of 57 datasets are publicly accessible. Conclusion: Numerous active learning strategies have been identified, along with significant open questions that still need to be addressed. Researchers and practitioners face difficulties when making data-driven decisions about which active learning strategy to adopt. Conducting comprehensive empirical comparisons using the evaluation environment proposed in this study could help establish best practices in the domain.}, language = {en} } @article{BergmannMoehrenBraunetal.2023, author = {Bergmann, Ole and M{\"o}hren, Felix and Braun, Carsten and Janser, Frank}, title = {On the influence of elasticity on swept propeller noise}, series = {AIAA SCITECH 2023 Forum}, journal = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2023-0210}, year = {2023}, abstract = {High aerodynamic efficiency requires propellers with high aspect ratios, while propeller sweep potentially reduces noise. Propeller sweep and high aspect ratios increase elasticity and coupling of structural mechanics and aerodynamics, affecting the propeller performance and noise. Therefore, this paper analyzes the influence of elasticity on forward-swept, backward-swept, and unswept propellers in hover conditions. A reduced-order blade element momentum approach is coupled with a one-dimensional Timoshenko beam theory and Farassat's formulation 1A. The results of the aeroelastic simulation are used as input for the aeroacoustic calculation. The analysis shows that elasticity influences noise radiation because thickness and loading noise respond differently to deformations. In the case of the backward-swept propeller, the location of the maximum sound pressure level shifts forward by 0.5 °, while in the case of the forward-swept propeller, it shifts backward by 0.5 °. Therefore, aeroacoustic optimization requires the consideration of propeller deformation.}, language = {en} } @article{DigelAkimbekovRogachevetal.2023, author = {Digel, Ilya and Akimbekov, Nuraly S. and Rogachev, Evgeniy and Pogorelova, Natalia}, title = {Bacterial cellulose produced by Medusomyces gisevii on glucose and sucrose: biosynthesis and structural properties}, series = {Cellulose}, journal = {Cellulose}, publisher = {Springer Science + Business Media}, address = {Dordrecht}, issn = {1572-882X (Online)}, doi = {10.1007/s10570-023-05592-z}, pages = {15 Seiten}, year = {2023}, abstract = {In this work, the effects of carbon sources and culture media on the production and structural properties of bacterial cellulose (BC) synthesized by Medusomyces gisevii have been studied. The culture medium was composed of different initial concentrations of glucose or sucrose dissolved in 0.4\% extract of plain green tea. Parameters of the culture media (titratable acidity, substrate conversion degree etc.) were monitored daily for 20 days of cultivation. The BC pellicles produced on different carbon sources were characterized in terms of biomass yield, crystallinity and morphology by field emission scanning electron microscopy (FE-SEM), atomic force microscopy and X-ray diffraction. Our results showed that Medusomyces gisevii had higher BC yields in media with sugar concentrations close to 10 g L-1 after a 18-20 days incubation period. Glucose in general lead to a higher BC yield (173 g L-1) compared to sucrose (163.5 g L-1). The BC crystallinity degree and surface roughness were higher in the samples synthetized from sucrose. Obtained FE-SEM micrographs show that the BC pellicles synthesized in the sucrose media contained densely packed tangles of cellulose fibrils whereas the BC produced in the glucose media displayed rather linear geometry of the BC fibrils without noticeable aggregates.}, language = {en} } @article{ThomaThomessenGardietal.2023, author = {Thoma, Andreas and Thomessen, Karolin and Gardi, Alessandro and Fisher, A. and Braun, Carsten}, title = {Prioritising paths: An improved cost function for local path planning for UAV in medical applications}, series = {The Aeronautical Journal}, journal = {The Aeronautical Journal}, number = {First View}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {0001-9240 (Print)}, doi = {10.1017/aer.2023.68}, pages = {1 -- 18}, year = {2023}, abstract = {Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50\% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26\%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30\%. These results show promise for further enhancements and to support broader applicability.}, language = {en} } @article{FalkenbergKohnBottetal.2023, author = {Falkenberg, Fabian and Kohn, Sophie and Bott, Michael and Bongaerts, Johannes and Siegert, Petra}, title = {Biochemical characterisation of a novel broad pH spectrum subtilisin from Fictibacillus arsenicus DSM 15822ᵀ}, series = {FEBS Open Bio}, volume = {13}, journal = {FEBS Open Bio}, number = {11}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {2211-5463}, doi = {10.1002/2211-5463.13701}, pages = {2035 -- 2046}, year = {2023}, abstract = {Subtilisins from microbial sources, especially from the Bacillaceae family, are of particular interest for biotechnological applications and serve the currently growing enzyme market as efficient and novel biocatalysts. Biotechnological applications include use in detergents, cosmetics, leather processing, wastewater treatment and pharmaceuticals. To identify a possible candidate for the enzyme market, here we cloned the gene of the subtilisin SPFA from Fictibacillus arsenicus DSM 15822ᵀ (obtained through a data mining-based search) and expressed it in Bacillus subtilis DB104. After production and purification, the protease showed a molecular mass of 27.57 kDa and a pI of 5.8. SPFA displayed hydrolytic activity at a temperature optimum of 80 °C and a very broad pH optimum between 8.5 and 11.5, with high activity up to pH 12.5. SPFA displayed no NaCl dependence but a high NaCl tolerance, with decreasing activity up to concentrations of 5 m NaCl. The stability enhanced with increasing NaCl concentration. Based on its substrate preference for 10 synthetic peptide 4-nitroanilide substrates with three or four amino acids and its phylogenetic classification, SPFA can be assigned to the subgroup of true subtilisins. Moreover, SPFA exhibited high tolerance to 5\% (w/v) SDS and 5\% H₂O₂ (v/v). The biochemical properties of SPFA, especially its tolerance of remarkably high pH, SDS and H₂O₂, suggest it has potential for biotechnological applications.}, language = {en} } @article{RuebbelkeVoegeleGrajewskietal.2023, author = {R{\"u}bbelke, Dirk and V{\"o}gele, Stefan and Grajewski, Matthias and Zobel, Luzy}, title = {Cross border adjustment mechanism: Initial data for the assessment of hydrogen-based steel production}, series = {Data in Brief}, volume = {47}, journal = {Data in Brief}, number = {Article 108907}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2023.108907}, pages = {1 -- 5}, year = {2023}, abstract = {Ambitious climate targets affect the competitiveness of industries in the international market. To prevent such industries from moving to other countries in the wake of increased climate protection efforts, cost adjustments may become necessary. Their design requires knowledge of country-specific production costs. Here, we present country-specific cost figures for different production routes of steel, paying particular attention to transportation costs. The data can be used in floor price models aiming to assess the competitiveness of different steel production routes in different countries (R{\"u}bbelke, 2022).}, language = {en} } @article{CheenakulaGriebelMontagetal.2023, author = {Cheenakula, Dheeraja and Griebel, Kai and Montag, David and Gr{\"o}mping, Markus}, title = {Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives}, series = {Frontiers in Microbiology}, volume = {14}, journal = {Frontiers in Microbiology}, number = {11155235}, editor = {Huang, Xiaowu}, publisher = {Frontiers}, issn = {1664-302X}, doi = {10.3389/fmicb.2023.1155235}, pages = {1 -- 15}, year = {2023}, abstract = {Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80\% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8-20°C), pH (6-9) and COD:N ratio (1-6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.}, language = {en} }