@article{SchollMoraisGabrieletal.2017, author = {Scholl, Fabio and Morais, Paulo and Gabriel, Rayla and Sch{\"o}ning, Michael Josef and Siqueira, Jose Roberto, Jr. and Caseli, Luciano}, title = {Carbon nanotubes arranged as smart interfaces in lipid Langmuir-Blodgett films enhancing the enzymatic properties of penicillinase for biosensing applications}, series = {Applied Materials \& Interfaces}, volume = {9}, journal = {Applied Materials \& Interfaces}, number = {36}, publisher = {ACS}, address = {Washington}, issn = {1944-8252}, doi = {10.1021/acsami.7b08095}, pages = {31054 -- 31066}, year = {2017}, abstract = {In this paper, carbon nanotubes (CNTs) were incorporated in penicillinase-phospholipid Langmuir and Langmuir-Blodgett (LB) films to enhance the enzyme catalytic properties. Adsorption of the penicillinase and CNTs at dimyristoylphosphatidic acid (DMPA) monolayers at the air-water interface was investigated by surface pressure-area isotherms, vibrational spectroscopy, and Brewster angle microscopy. The floating monolayers were transferred to solid supports through the LB technique, forming mixed DMPA-CNTs-PEN films, which were investigated by quartz crystal microbalance, vibrational spectroscopy, and atomic force microscopy. Enzyme activity was studied with UV-vis spectroscopy and the feasibility of the supramolecular device nanostructured as ultrathin films were essayed in a capacitive electrolyte-insulator-semiconductor (EIS) sensor device. The presence of CNTs in the enzyme-lipid LB film not only tuned the catalytic activity of penicillinase but also helped conserve its enzyme activity after weeks, showing increased values of activity. Viability as penicillin sensor was demonstrated with capacitance/voltage and constant capacitance measurements, exhibiting regular and distinctive output signals over all concentrations used in this work. These results may be related not only to the nanostructured system provided by the film, but also to the synergism between the compounds on the active layer, leading to a surface morphology that allowed a fast analyte diffusion because of an adequate molecular accommodation, which also preserved the penicillinase activity. This work therefore demonstrates the feasibility of employing LB films composed of lipids, CNTs, and enzymes as EIS devices for biosensing applications.}, language = {en} } @article{TranMottaghyArltKoerferetal.2017, author = {Tran, Linda and Mottaghy, K. and Arlt-K{\"o}rfer, Sabine and Waluga, Christian and Behbahani, Mehdi}, title = {An experimental study of shear-dependent human platelet adhesion and underlying protein-binding mechanisms in a cylindrical Couette system}, series = {Biomedizinische Technik}, volume = {62}, journal = {Biomedizinische Technik}, number = {4}, publisher = {De Gruyter}, address = {Berlin}, issn = {0013-5585}, doi = {10.1515/bmt-2015-0034}, pages = {383 -- 392}, year = {2017}, language = {en} } @article{MoraisGomesSilvaetal.2017, author = {Morais, Paulo V. and Gomes, Vanderley F., Jr. and Silva, Anielle C. A. and Dantas, Noelio O. and Sch{\"o}ning, Michael Josef and Siqueira, Jos{\´e} R., Jr.}, title = {Nanofilm of ZnO nanocrystals/carbon nanotubes as biocompatible layer for enzymatic biosensors in capacitive field-effect devices}, series = {Journal of Materials Science}, volume = {52}, journal = {Journal of Materials Science}, number = {20}, publisher = {Springer}, address = {Berlin}, issn = {1573-4803}, doi = {10.1007/s10853-017-1369-y}, pages = {12314 -- 12325}, year = {2017}, abstract = {The incorporation of nanomaterials that are biocompatible with different types of biological compounds has allowed the development of a new generation of biosensors applied especially in the biomedical field. In particular, the integration of film-based nanomaterials employed in field-effect devices can be interesting to develop biosensors with enhanced properties. In this paper, we studied the fabrication of sensitive nanofilms combining ZnO nanocrystals and carbon nanotubes (CNTs), prepared by means of the layer-by-layer (LbL) technique, in a capacitive electrolyte-insulator-semiconductor (EIS) structure for detecting glucose and urea. The ZnO nanocrystals were incorporated in a polymeric matrix of poly(allylamine) hydrochloride (PAH), and arranged with multi-walled CNTs in a LbL PAH-ZnO/CNTs film architecture onto EIS chips. The electrochemical characterizations were performed by capacitance-voltage and constant capacitance measurements, while the morphology of the films was characterized by atomic force microscopy. The enzymes glucose oxidase and urease were immobilized on film's surface for detection of glucose and urea, respectively. In order to obtain glucose and urea biosensors with optimized amount of sensitive films, we investigated the ideal number of bilayers for each detection system. The glucose biosensor showed better sensitivity and output signal for an LbL PAH-ZnO/CNTs nanofilm with 10 bilayers. On the other hand, the urea biosensor presented enhanced properties even for the first bilayer, exhibiting high sensitivity and output signal. The presence of the LbL PAH-ZnO/CNTs films led to biosensors with better sensitivity and enhanced response signal, demonstrating that the adequate use of nanostructured films is feasible for proof-of-concept biosensors with improved properties that may be employed for biomedical applications.}, language = {en} } @article{LambersBragard2017, author = {Lambers, Andreas and Bragard, Michael}, title = {Kinetische Skulptur - Treffen sich ein E-Techniker und ein K{\"u}nstler ...}, series = {Elektor : learn, design, share}, volume = {48}, journal = {Elektor : learn, design, share}, number = {9}, publisher = {Elektor-Verlag}, address = {Aachen}, issn = {0932-5468}, pages = {78 -- 83}, year = {2017}, abstract = {Die Verbindung der Welten dressierter Elektronen und grenzenloser Kreativit{\"a}t bietet ein großes Potential; zum Beispiel bei modernen Skulpturen, deren Form sich durch Motoren ver{\"a}ndern kann. An der FH Aachen wurde ein solches Projekt verwirklicht: Eine Matrix aus Holzkugeln kann Piktogramme anzeigen, aber auch mathematische Funktionen visualisieren. In diesem Artikel beschreiben wir die clevere Ansteuerung der Motoren.}, language = {de} } @article{RoehlenPilasSchoeningetal.2017, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Development of an amperometric biosensor platform for the combined determination of l-Malic, Fumaric, and l-Aspartic acid}, series = {Applied Biochemistry and Biotechnology}, volume = {183}, journal = {Applied Biochemistry and Biotechnology}, publisher = {Springer}, address = {Berlin}, issn = {1559-0291}, doi = {10.1007/s12010-017-2578-1}, pages = {566 -- 581}, year = {2017}, abstract = {Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD+) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM-1 (L-malate biosensor) and 0.4 μA mM-1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0-10.0 mM with a sensitivity of 0.09 μA mM-1. The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates.}, language = {en} } @article{PilasYaziciSelmeretal.2017, author = {Pilas, Johanna and Yazici, Yasemen and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate}, series = {Electrochimica Acta}, volume = {251}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.07.119}, pages = {256 -- 262}, year = {2017}, abstract = {The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4\% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided.}, language = {en} } @article{AlbannaLuekeSjapicetal.2017, author = {Albanna, Walid and Lueke, Jan Niklas and Sjapic, Volha and Kotliar, Konstantin and Hescheler, J{\"u}rgen and Clusmann, Hans and Sjapic, Sergej and Alpdogan, Serdan and Schneider, Toni and Schubert, Gerrit Alexander and Neumaier, Felix}, title = {Electroretinographic Assessment of Inner Retinal Signaling in the Isolated and Superfused Murine Retina}, series = {Current Eye Research}, journal = {Current Eye Research}, number = {Article in press}, publisher = {Taylor \& Francis}, address = {London}, issn = {1460-2202}, doi = {10.1080/02713683.2017.1339807}, pages = {1 -- 9}, year = {2017}, language = {en} } @article{BalzerStreitHeinze2017, author = {Balzer, Hermann and Streit, Daniel and Heinze, Marcel}, title = {Implikationen der Digitalisierung f{\"u}r den Finanzbereich der Unternehmung und das Rollenbild des CFO}, series = {Betriebswirtschaftliche Implikationen der digitalen Transformation. ZfbF - Schmalenbachs Zeitschrift f{\"u}r betriebswirtschaftliche Forschung, Sonderheft 72}, journal = {Betriebswirtschaftliche Implikationen der digitalen Transformation. ZfbF - Schmalenbachs Zeitschrift f{\"u}r betriebswirtschaftliche Forschung, Sonderheft 72}, number = {72}, editor = {Krause, Stefan}, publisher = {Springer}, address = {Berlin}, doi = {10.1007/978-3-658-18751-4_14}, pages = {267 -- 283}, year = {2017}, language = {de} } @article{RietschPfaffenrotBitzetal.2017, author = {Rietsch, Stefan H. G. and Pfaffenrot, Viktor and Bitz, Andreas and Orzada, Stephan and Brunheim, Sascha and Lazik-Palm, Andrea and Theysohn, Jens M. and Ladd, Mark E. and Quick, Harald H. and Kraff, Oliver}, title = {An 8-channel transceiver 7-channel receive RF coil setup for high SNR ultrahigh-field MRI of the shoulder at 7T}, series = {Medical Physics}, journal = {Medical Physics}, number = {Article in press}, publisher = {Wiley}, address = {Hoboken}, issn = {0094-2405}, doi = {10.1002/mp.12612}, year = {2017}, language = {en} } @article{KotliarHauserOrtneretal.2017, author = {Kotliar, Konstantin and Hauser, Christine and Ortner, Marion and Muggenthaler, Claudia and Diehl-Schmid, Janine and Angermann, Susanne and Hapfelmeier, Alexander and Schmaderer, Christoph and Grimmer, Timo}, title = {Altered neurovascular coupling as measured by optical imaging: a biomarker for Alzheimer's disease}, series = {Scientific Reports}, volume = {7}, journal = {Scientific Reports}, number = {1}, publisher = {Springer Nature}, address = {Cham}, issn = {2045-2322}, doi = {10.1038/s41598-017-13349-5}, pages = {1 -- 11}, year = {2017}, language = {en} }