@inproceedings{BuxbaumSchwarteRingbecketal.1998, author = {Buxbaum, Bernd and Schwarte, Rudolf and Ringbeck, Thorsten and Heinol, Horst-Guenther and Xu, Z. and Olk, J. and Tai, W. and Zhang, Z. and Luan, X.}, title = {A new approach in optical broadband communication systems : a high integrated optical phase locked loop based on a mixing and correlating sensor, the Photonic Mixer Device (PMD)}, series = {Proceedings / OPTO 98, Internationaler Kongress und Fachausstellung f{\"u}r Optische Sensorik, Messtechnik und Elektronik, 18. - 20. Mai 1998, Kongresszentrum Erfurt}, booktitle = {Proceedings / OPTO 98, Internationaler Kongress und Fachausstellung f{\"u}r Optische Sensorik, Messtechnik und Elektronik, 18. - 20. Mai 1998, Kongresszentrum Erfurt}, publisher = {ACS Organisations GmbH}, address = {Wunsdorf}, pages = {59 -- 64}, year = {1998}, language = {en} } @inproceedings{ElsenKraissKrumbiegel1997, author = {Elsen, Ingo and Kraiss, Karl-Friedrich and Krumbiegel, Dirk}, title = {Pixel based 3D object recognition with bidirectional associative memories}, series = {International Conference on Neural Networks 1997}, booktitle = {International Conference on Neural Networks 1997}, publisher = {IEEE}, address = {New York}, isbn = {0-7803-4122-8}, pages = {1679 -- 1684}, year = {1997}, abstract = {This paper addresses the pixel based recognition of 3D objects with bidirectional associative memories. Computational power and memory requirements for this approach are identified and compared to the performance of current computer architectures by benchmarking different processors. It is shown, that the performance of special purpose hardware, like neurocomputers, is between one and two orders of magnitude higher than the performance of mainstream hardware. On the other hand, the calculation of small neural networks is performed more efficiently on mainstream processors. Based on these results a novel concept is developed, which is tailored for the efficient calculation of bidirectional associative memories. The computational efficiency is further enhanced by the application of algorithms and storage techniques which are matched to characteristics of the application at hand.}, language = {en} }