@article{BlankeHagenkampDoeringetal.2021, author = {Blanke, Tobias and Hagenkamp, Markus and D{\"o}ring, Bernd and G{\"o}ttsche, Joachim and Reger, Vitali and Kuhnhenne, Markus}, title = {Net-exergetic, hydraulic and thermal optimization of coaxial heat exchangers using fixed flow conditions instead of fixed flow rates}, series = {Geothermal Energy}, volume = {9}, journal = {Geothermal Energy}, number = {Article number: 19}, publisher = {Springer}, address = {Berlin}, issn = {2195-9706}, doi = {10.1186/s40517-021-00201-3}, pages = {23 Seiten}, year = {2021}, abstract = {Previous studies optimized the dimensions of coaxial heat exchangers using constant mass fow rates as a boundary condition. They show a thermal optimal circular ring width of nearly zero. Hydraulically optimal is an inner to outer pipe radius ratio of 0.65 for turbulent and 0.68 for laminar fow types. In contrast, in this study, fow conditions in the circular ring are kept constant (a set of fxed Reynolds numbers) during optimization. This approach ensures fxed fow conditions and prevents inappropriately high or low mass fow rates. The optimization is carried out for three objectives: Maximum energy gain, minimum hydraulic efort and eventually optimum net-exergy balance. The optimization changes the inner pipe radius and mass fow rate but not the Reynolds number of the circular ring. The thermal calculations base on Hellstr{\"o}m's borehole resistance and the hydraulic optimization on individually calculated linear loss of head coefcients. Increasing the inner pipe radius results in decreased hydraulic losses in the inner pipe but increased losses in the circular ring. The net-exergy diference is a key performance indicator and combines thermal and hydraulic calculations. It is the difference between thermal exergy fux and hydraulic efort. The Reynolds number in the circular ring is instead of the mass fow rate constant during all optimizations. The result from a thermal perspective is an optimal width of the circular ring of nearly zero. The hydraulically optimal inner pipe radius is 54\% of the outer pipe radius for laminar fow and 60\% for turbulent fow scenarios. Net-exergetic optimization shows a predominant infuence of hydraulic losses, especially for small temperature gains. The exact result depends on the earth's thermal properties and the fow type. Conclusively, coaxial geothermal probes' design should focus on the hydraulic optimum and take the thermal optimum as a secondary criterion due to the dominating hydraulics.}, language = {en} } @article{BlankeRegerDoeringetal.2021, author = {Blanke, Tobias and Reger, Vitali and D{\"o}ring, Bernd and G{\"o}ttsche, Joachim and Kuhnhenne, Markus}, title = {Koaxiale Stahlenergiepf{\"a}hle}, series = {Stahlbau}, volume = {90. 2021}, journal = {Stahlbau}, number = {6}, publisher = {Wiley}, address = {Weinheim}, pages = {417 -- 424}, year = {2021}, abstract = {Ein entscheidender Teil der Energiewende ist die W{\"a}rmewende im Geb{\"a}udesektor. Ein Schl{\"u}sselelement sind hier W{\"a}rmepumpen. Diese ben{\"o}tigen eine W{\"a}rmequelle, der sie Energie entziehen k{\"o}nnen, um sie auf ein h{\"o}heres Temperaturniveau zu transformieren. Diese W{\"a}rmequelle kann bspw. das Erdreich sein, dessen W{\"a}rme durch Erdsonden erschlossen werden kann. In diesem Beitrag werden in Stahlpf{\"a}hle integrierte Koaxialsonden mit dem Stand der Technik von Erdsonden gleichen Durchmessers bez{\"u}glich ihrer thermischen Leistungsmerkmale verglichen. Die Stahlenergiepf{\"a}hle bieten neben der W{\"a}rmegewinnung weitere Vorteile, da sie auch eine statische Funktion {\"u}bernehmen und r{\"u}ckstandsfrei zur{\"u}ckgebaut werden k{\"o}nnen. Es werden analytische und numerische Berechnungen vorgestellt, um die thermischen Potenziale beider Systeme zu vergleichen. Außerdem wird ein Testaufbau gezeigt, bei dem Stahlenergiepf{\"a}hle in zwei verschiedenen L{\"a}ngen mit vorhandenen g{\"a}ngigen Erdsonden verglichen werden k{\"o}nnen. Die Berechnungen zeigen einen deutlichen thermischen Mehrertrag zwischen 26 \% und 148 \% der Stahlenergiepf{\"a}hle gegen{\"u}ber dem Stand der Technik abh{\"a}ngig vom Erdreich. Die Messergebnisse zeigen einen thermischen Mehrertrag von {\"u}ber 100 \%. Es l{\"a}sst sich also signifikante Erdsondenl{\"a}nge einsparen. Dabei ist zu beachten, dass sich damit der thermisch genutzte Bereich des Erdreichs reduziert, wodurch die thermische Regeneration und/oder das Langzeitverhalten des Erdreichs an Bedeutung gewinnt.}, language = {de} } @article{SattlerRoegerSchwarzboezletal.2020, author = {Sattler, Johannes, Christoph and R{\"o}ger, Marc and Schwarzb{\"o}zl, Peter and Buck, Reiner and Macke, Ansgar and Raeder, Christian and G{\"o}ttsche, Joachim}, title = {Review of heliostat calibration and tracking control methods}, series = {Solar Energy}, volume = {207}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.solener.2020.06.030}, pages = {110 -- 132}, year = {2020}, abstract = {Large scale central receiver systems typically deploy between thousands to more than a hundred thousand heliostats. During solar operation, each heliostat is aligned individually in such a way that the overall surface normal bisects the angle between the sun's position and the aim point coordinate on the receiver. Due to various tracking error sources, achieving accurate alignment ≤1 mrad for all the heliostats with respect to the aim points on the receiver without a calibration system can be regarded as unrealistic. Therefore, a calibration system is necessary not only to improve the aiming accuracy for achieving desired flux distributions but also to reduce or eliminate spillage. An overview of current larger-scale central receiver systems (CRS), tracking error sources and the basic requirements of an ideal calibration system is presented. Leading up to the main topic, a description of general and specific terms on the topics heliostat calibration and tracking control clarifies the terminology used in this work. Various figures illustrate the signal flows along various typical components as well as the corresponding monitoring or measuring devices that indicate or measure along the signal (or effect) chain. The numerous calibration systems are described in detail and classified in groups. Two tables allow the juxtaposition of the calibration methods for a better comparison. In an assessment, the advantages and disadvantages of individual calibration methods are presented.}, language = {en} } @article{RegerKuhnhenneHachuletal.2019, author = {Reger, Vitali and Kuhnhenne, Markus and Hachul, Helmut and D{\"o}ring, Bernd and Blanke, Tobias and G{\"o}ttsche, Joachim}, title = {Plusenergiegeb{\"a}ude 2.0 in Stahlleichtbauweise}, series = {Stahlbau}, volume = {88}, journal = {Stahlbau}, number = {6}, publisher = {Ernst \& Sohn}, address = {Berlin}, issn = {1437-1049 (E-journal), 0038-9145 (print)}, doi = {10.1002/stab.201900034}, pages = {522 -- 528}, year = {2019}, language = {de} } @article{GoettscheAlexopoulosDuemmleretal.2019, author = {G{\"o}ttsche, Joachim and Alexopoulos, Spiros and D{\"u}mmler, Andreas and Maddineni, S. K.}, title = {Multi-Mirror Array Calculations With Optical Error}, pages = {1 -- 6}, year = {2019}, abstract = {The optical performance of a 2-axis solar concentrator was simulated with the COMSOL Multiphysics® software. The concentrator consists of a mirror array, which was created using the application builder. The mirror facets are preconfigured to form a focal point. During tracking all mirrors are moved simultaneously in a coupled mode by 2 motors in two axes, in order to keep the system in focus with the moving sun. Optical errors on each reflecting surface were implemented in combination with the solar angular cone of ± 4.65 mrad. As a result, the intercept factor of solar radiation that is available to the receiver was calculated as a function of the transversal and longitudinal angles of incidence. In addition, the intensity distribution on the receiver plane was calculated as a function of the incidence angles.}, language = {en} } @article{GoettscheHoffschmidtSchmitzetal.2010, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Sauerborn, Markus}, title = {Solar Concentrating Systems Using Small Mirror Arrays}, series = {Journal of solar energy engineering}, volume = {Vol. 132}, journal = {Journal of solar energy engineering}, number = {Iss. 1}, isbn = {0199-6231}, pages = {4 S.}, year = {2010}, language = {en} } @article{GoettscheHoffschmidtSchmitzetal.2009, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Sauerborn, Markus}, title = {Solar Concentrating Systems Using Small Mirror Arrays / G{\"o}ttsche, Joachim ; Hoffschmidt, Bernhard ; Schmitz, Stefan ; Sauerborn, Markus ; Buck, Reiner ; Teufel, Edgar ; Badst{\"u}bner, Karin ; Ifland, David ; Rebholz, Christian}, series = {Proceedings of the 2nd International Conference on Energy Sustainability - 2008 : : presented ... August 10 - 14, 2008, Jacksonville, Florida, USA / sponsored by Advanced Energy Systems Division, ASME; Solar Energy Division, ASME}, journal = {Proceedings of the 2nd International Conference on Energy Sustainability - 2008 : : presented ... August 10 - 14, 2008, Jacksonville, Florida, USA / sponsored by Advanced Energy Systems Division, ASME; Solar Energy Division, ASME}, publisher = {ASME}, address = {New York, NY}, isbn = {9780791843208}, pages = {1 -- 5}, year = {2009}, language = {en} } @article{GoettscheSchwarzerRoetheretal.2009, author = {G{\"o}ttsche, Joachim and Schwarzer, Klemens and R{\"o}ther, S. and Jellinghaus, Sabine}, title = {Efficient daylighting, heating and shading with rooflight heliostats}, series = {Conference Internationale Energie Solaire et Batiment}, journal = {Conference Internationale Energie Solaire et Batiment}, publisher = {EPFL}, address = {Lausanne}, pages = {243 -- 248}, year = {2009}, language = {en} } @article{GoettscheHoffschmidtAlexopoulosetal.2008, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Alexopoulos, Spiros and Funke, J. and Schwarzb{\"o}zl, P.}, title = {First Simulation Results for the Hybridization of Small Solar Power Tower Plants}, series = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings, 2008-10-07 - 2008-10-10, Lissabon (Portugal). Vol. 1}, journal = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings, 2008-10-07 - 2008-10-10, Lissabon (Portugal). Vol. 1}, publisher = {Sociedade Portuguesa De Energia Solar (SPES)}, address = {Lisbon}, isbn = {978-1-61782-228-5}, pages = {1299 -- 1306}, year = {2008}, language = {en} } @article{HenneckeSchwarzboezlHoffschmidtetal.2007, author = {Hennecke, Klaus and Schwarzb{\"o}zl, Peter and Hoffschmidt, Bernhard and G{\"o}ttsche, Joachim and Koll, G. and Beuter, M. and Hartz, T.}, title = {The solar power tower J{\"u}lich - a solar thermal power plant for test and demonstration of air receiver}, series = {Solar energy and human settlement : Elektronische Ressource : proceedings of ISES world congress 2007 ; (Vol. I - Vol. V) / [ISES Solar World Congress. ISES, International Solar Energy Society]. D. Yogi Goswami ; Yuwen Zhao}, journal = {Solar energy and human settlement : Elektronische Ressource : proceedings of ISES world congress 2007 ; (Vol. I - Vol. V) / [ISES Solar World Congress. ISES, International Solar Energy Society]. D. Yogi Goswami ; Yuwen Zhao}, publisher = {Tsinghua Univ. Press}, address = {Beijing}, isbn = {978-7-302-16146-2}, pages = {1749 -- 1753}, year = {2007}, language = {en} }