@inproceedings{WittigRuettersBragard2024, author = {Wittig, M. and R{\"u}tters, Ren{\´e} and Bragard, Michael}, title = {Application of RL in control systems using the example of a rotatory inverted pendulum}, series = {Tagungsband AALE 2024 : Fit f{\"u}r die Zukunft: praktische L{\"o}sungen f{\"u}r die industrielle Automation}, booktitle = {Tagungsband AALE 2024 : Fit f{\"u}r die Zukunft: praktische L{\"o}sungen f{\"u}r die industrielle Automation}, editor = {Reiff-Stephan, J{\"o}rg and J{\"a}kel, Jens and Schwarz, Andr{\´e}}, publisher = {le-tex publishing services GmbH}, address = {Leipzig}, isbn = {978-3-910103-02-3}, doi = {10.33968/2024.53}, pages = {241 -- 248}, year = {2024}, abstract = {In this paper, the use of reinforcement learning (RL) in control systems is investigated using a rotatory inverted pendulum as an example. The control behavior of an RL controller is compared to that of traditional LQR and MPC controllers. This is done by evaluating their behavior under optimal conditions, their disturbance behavior, their robustness and their development process. All the investigated controllers are developed using MATLAB and the Simulink simulation environment and later deployed to a real pendulum model powered by a Raspberry Pi. The RL algorithm used is Proximal Policy Optimization (PPO). The LQR controller exhibits an easy development process, an average to good control behavior and average to good robustness. A linear MPC controller could show excellent results under optimal operating conditions. However, when subjected to disturbances or deviations from the equilibrium point, it showed poor performance and sometimes instable behavior. Employing a nonlinear MPC Controller in real time was not possible due to the high computational effort involved. The RL controller exhibits by far the most versatile and robust control behavior. When operated in the simulation environment, it achieved a high control accuracy. When employed in the real system, however, it only shows average accuracy and a significantly greater performance loss compared to the simulation than the traditional controllers. With MATLAB, it is not yet possible to directly post-train the RL controller on the Raspberry Pi, which is an obstacle to the practical application of RL in a prototyping or teaching setting. Nevertheless, RL in general proves to be a flexible and powerful control method, which is well suited for complex or nonlinear systems where traditional controllers struggle.}, language = {en} } @article{SchoppRohrbachLangeretal.2024, author = {Schopp, Christoph and Rohrbach, Felix and Langer, Luc and Heuermann, Holger}, title = {Detection of welding wire length by active S11 measurement}, series = {IEEE Transactions on Plasma Science}, journal = {IEEE Transactions on Plasma Science}, number = {Early Access}, publisher = {IEEE}, issn = {0093-3813 (Print)}, doi = {10.1109/TPS.2024.3356659}, pages = {1 -- 6}, year = {2024}, abstract = {A novel method to determine the extruded length of a metallic wire for a directed energy deposition (DED) process using a microwave (MW) plasma jet with a straight-through wire feed is presented. The method is based on the relative comparison of the measured frequency response obtained by the large-signal scattering parameter (Hot-S) technique. In the practical working range, repeatability of less than 6\% for a nonactive plasma and 9\% for the active plasma state is found. Measurements are conducted with a focus on a simple solution to decrease the processing time and reduce the integration time of the process into the existing hardware. It is shown that monitoring a single frequency for magnitude and phase changes is sufficient to achieve good accuracy. A combination of different measurement values to determine the length is possible. The applicability to different diameter of the same material is shown as well as a contact detection of the wire and metallic substrate.}, language = {en} } @article{TurdumamatovBeldaHeuermann2024, author = {Turdumamatov, Samat and Belda, Aljoscha and Heuermann, Holger}, title = {Shaping a decoupled atmospheric pressure microwave plasma with antenna structures, Maxwell's equations, and boundary conditions}, series = {IEEE Transactions on Plasma Science}, journal = {IEEE Transactions on Plasma Science}, number = {Early Access}, publisher = {IEEE}, issn = {0093-3813 (Print)}, doi = {10.1109/TPS.2024.3383589}, pages = {1 -- 9}, year = {2024}, abstract = {This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding 3500 o C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design's effectiveness, while experimental validation underscores the method's feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S -parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications.}, language = {en} } @article{WiegnerVolkerMainzetal.2023, author = {Wiegner, Jonas and Volker, Hanno and Mainz, Fabian and Backes, Andreas and Loeken, Michael and H{\"u}ning, Felix}, title = {Energy analysis of a wireless sensor node powered by a Wiegand sensor}, series = {Journal of Sensors and Sensor Systems (JSSS)}, volume = {12}, journal = {Journal of Sensors and Sensor Systems (JSSS)}, number = {1}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2194-878X}, doi = {10.5194/jsss-12-85-2023}, pages = {85 -- 92}, year = {2023}, abstract = {This article describes an Internet of things (IoT) sensing device with a wireless interface which is powered by the energy-harvesting method of the Wiegand effect. The Wiegand effect, in contrast to continuous sources like photovoltaic or thermal harvesters, provides small amounts of energy discontinuously in pulsed mode. To enable an energy-self-sufficient operation of the sensing device with this pulsed energy source, the output energy of the Wiegand generator is maximized. This energy is used to power up the system and to acquire and process data like position, temperature or other resistively measurable quantities as well as transmit these data via an ultra-low-power ultra-wideband (UWB) data transmitter. A proof-of-concept system was built to prove the feasibility of the approach. The energy consumption of the system during start-up was analysed, traced back in detail to the individual components, compared to the generated energy and processed to identify further optimization options. Based on the proof of concept, an application prototype was developed.}, language = {en} } @inproceedings{GrundAltherr2023, author = {Grund, Raphael M. and Altherr, Lena}, title = {Development of an open source energy disaggregation tool for the home automation platform Home Assistant}, series = {Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel}, booktitle = {Tagungsband AALE 2023 : mit Automatisierung gegen den Klimawandel}, editor = {Reiff-Stephan, J{\"o}rg and J{\"a}kel, Jens and Schwarz, Andr{\´e}}, publisher = {le-tex publishing services GmbH}, address = {Leipzig}, isbn = {978-3-910103-01-6}, doi = {10.33968/2023.02}, pages = {11 -- 20}, year = {2023}, abstract = {In order to reduce energy consumption of homes, it is important to make transparent which devices consume how much energy. However, power consumption is often only monitored aggregated at the house energy meter. Disaggregating this power consumption into the contributions of individual devices can be achieved using Machine Learning. Our work aims at making state of the art disaggregation algorithms accessibe for users of the open source home automation platform Home Assistant.}, language = {en} } @inproceedings{ChircuCzarneckiFriedmannetal.2023, author = {Chircu, Alina and Czarnecki, Christian and Friedmann, Daniel and Pomaskow, Johanna and Sultanow, Eldar}, title = {Towards a Digital Twin of Society}, series = {Proceedings of the 56th Hawaii International Conference on System Sciences 2023}, booktitle = {Proceedings of the 56th Hawaii International Conference on System Sciences 2023}, publisher = {University of Hawai'i}, address = {Honolulu}, isbn = {978-0-9981331-6-4}, pages = {6748 -- 6757}, year = {2023}, abstract = {This paper describes the potential for developing a digital twin of society- a dynamic model that can be used to observe, analyze, and predict the evolution of various societal aspects. Such a digital twin can help governmental agencies and policy makers in interpreting trends, understanding challenges, and making decisions regarding investments or policies necessary to support societal development and ensure future prosperity. The paper reviews related work regarding the digital twin paradigm and its applications. The paper presents a motivating case study- an analysis of opportunities and challenges faced by the German federal employment agency, Bundesagentur f¨ur Arbeit (BA), proposes solutions using digital twins, and describes initial proofs of concept for such solutions.}, language = {en} } @inproceedings{NikolovskiLimpertNessauetal.2023, author = {Nikolovski, Gjorgji and Limpert, Nicolas and Nessau, Hendrik and Reke, Michael and Ferrein, Alexander}, title = {Model-predictive control with parallelised optimisation for the navigation of autonomous mining vehicles}, series = {2023 IEEE Intelligent Vehicles Symposium (IV)}, booktitle = {2023 IEEE Intelligent Vehicles Symposium (IV)}, publisher = {IEEE}, isbn = {979-8-3503-4691-6 (Online)}, doi = {10.1109/IV55152.2023.10186806}, pages = {6 Seiten}, year = {2023}, abstract = {The work in modern open-pit and underground mines requires the transportation of large amounts of resources between fixed points. The navigation to these fixed points is a repetitive task that can be automated. The challenge in automating the navigation of vehicles commonly used in mines is the systemic properties of such vehicles. Many mining vehicles, such as the one we have used in the research for this paper, use steering systems with an articulated joint bending the vehicle's drive axis to change its course and a hydraulic drive system to actuate axial drive components or the movements of tippers if available. To address the difficulties of controlling such a vehicle, we present a model-predictive approach for controlling the vehicle. While the control optimisation based on a parallel error minimisation of the predicted state has already been established in the past, we provide insight into the design and implementation of an MPC for an articulated mining vehicle and show the results of real-world experiments in an open-pit mine environment.}, language = {en} } @incollection{EggertZaehlWolfetal.2023, author = {Eggert, Mathias and Z{\"a}hl, Philipp M. and Wolf, Martin R. and Haase, Martin}, title = {Applying leaderboards for quality improvement in software development projects}, series = {Software Engineering for Games in Serious Contexts}, booktitle = {Software Engineering for Games in Serious Contexts}, editor = {Cooper, Kendra M.L. and Bucchiarone, Antonio}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-33337-8 (Print)}, doi = {10.1007/978-3-031-33338-5_11}, pages = {243 -- 263}, year = {2023}, abstract = {Software development projects often fail because of insufficient code quality. It is now well documented that the task of testing software, for example, is perceived as uninteresting and rather boring, leading to poor software quality and major challenges to software development companies. One promising approach to increase the motivation for considering software quality is the use of gamification. Initial research works already investigated the effects of gamification on software developers and come to promising. Nevertheless, a lack of results from field experiments exists, which motivates the chapter at hand. By conducting a gamification experiment with five student software projects and by interviewing the project members, the chapter provides insights into the changing programming behavior of information systems students when confronted with a leaderboard. The results reveal a motivational effect as well as a reduction of code smells.}, language = {en} } @inproceedings{EichenbaumNikolovskiMuelhensetal.2023, author = {Eichenbaum, Julian and Nikolovski, Gjorgji and M{\"u}lhens, Leon and Reke, Michael and Ferrein, Alexander and Scholl, Ingrid}, title = {Towards a lifelong mapping approach using Lanelet 2 for autonomous open-pit mine operations}, series = {2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)}, booktitle = {2023 IEEE 19th International Conference on Automation Science and Engineering (CASE)}, publisher = {IEEE}, isbn = {979-8-3503-2069-5 (Online)}, doi = {10.1109/CASE56687.2023.10260526}, pages = {8 Seiten}, year = {2023}, abstract = {Autonomous agents require rich environment models for fulfilling their missions. High-definition maps are a well-established map format which allows for representing semantic information besides the usual geometric information of the environment. These are, for instance, road shapes, road markings, traffic signs or barriers. The geometric resolution of HD maps can be as precise as of centimetre level. In this paper, we report on our approach of using HD maps as a map representation for autonomous load-haul-dump vehicles in open-pit mining operations. As the mine undergoes constant change, we also need to constantly update the map. Therefore, we follow a lifelong mapping approach for updating the HD maps based on camera-based object detection and GPS data. We show our mapping algorithm based on the Lanelet 2 map format and show our integration with the navigation stack of the Robot Operating System. We present experimental results on our lifelong mapping approach from a real open-pit mine.}, language = {en} } @inproceedings{TischbeinKeanVertgewalletal.2023, author = {Tischbein, Franziska and Kean, Kilian and Vertgewall, Chris Martin and Ulbig, Andreas and Altherr, Lena}, title = {Determination of the topology of low-voltage distribution grids using cluster methods}, series = {27th International Conference on Electricity Distribution (CIRED 2023)}, booktitle = {27th International Conference on Electricity Distribution (CIRED 2023)}, publisher = {IEEE}, isbn = {978-1-83953-855-1}, doi = {10.1049/icp.2023.0478}, pages = {1 -- 5}, year = {2023}, abstract = {Due to the decarbonization of the energy sector, the electric distribution grids are undergoing a major transformation, which is expected to increase the load on the operating resources due to new electrical loads and distributed energy resources. Therefore, grid operators need to gradually move to active grid management in order to ensure safe and reliable grid operation. However, this requires knowledge of key grid variables, such as node voltages, which is why the mass integration of measurement technology (smart meters) is necessary. Another problem is the fact that a large part of the topology of the distribution grids is not sufficiently digitized and models are partly faulty, which means that active grid operation management today has to be carried out largely blindly. It is therefore part of current research to develop methods for determining unknown grid topologies based on measurement data. In this paper, different clustering algorithms are presented and their performance of topology detection of low voltage grids is compared. Furthermore, the influence of measurement uncertainties is investigated in the form of a sensitivity analysis.}, language = {en} }