@article{KesslerBalcGebhardtetal.2015, author = {Kessler, Julia and Balc, Nicolae and Gebhardt, Andreas and Abbas, Karim}, title = {Basic Research on Lattice Structures Focused on the Tensile Strength}, series = {Applied Mechanics and Materials}, volume = {Vol. 808}, journal = {Applied Mechanics and Materials}, publisher = {Trans Tech Publications}, address = {B{\"a}ch}, issn = {1662-7482}, doi = {10.4028/www.scientific.net/AMM.808.193}, pages = {193 -- 198}, year = {2015}, language = {en} } @article{FateriGebhardt2015, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Selective Laser Melting of Soda-Lime Glass Powder}, series = {International Journal of Applied Ceramic Technology}, volume = {12}, journal = {International Journal of Applied Ceramic Technology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1744-7402}, doi = {10.1111/ijac.12338}, pages = {53 -- 61}, year = {2015}, language = {en} } @article{FateriGebhardt2015, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Process Parameters Development of Selective Laser Melting of Lunar Regolith for On-Site Manufacturing Applications}, series = {International Journal of Applied Ceramic Technology}, volume = {12}, journal = {International Journal of Applied Ceramic Technology}, number = {1}, publisher = {Wiley-Blackwell}, address = {Oxford}, isbn = {1744-7402}, doi = {10.1111/ijac.12326}, pages = {46 -- 52}, year = {2015}, language = {en} } @article{FateriGebhardtThuemmleretal.2014, author = {Fateri, Miranda and Gebhardt, Andreas and Th{\"u}mmler, Stefan and Thurn, Laura}, title = {Experimental investigation on selective laser melting of glass}, series = {Physics procedia : 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014}, volume = {56 (2014)}, journal = {Physics procedia : 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1875-3892 (E-Journal); 1875-3884 (Print)}, doi = {10.1016/j.phpro.2014.08.118}, pages = {357 -- 364}, year = {2014}, language = {en} } @article{HaagZontarSchleupenetal.2014, author = {Haag, S. and Zontar, D. and Schleupen, Josef and M{\"u}ller, T. and Brecher, C.}, title = {Chain of refined perception in self-optimizing assembly of micro-optical systems}, series = {Journal of sensors and sensor systems}, volume = {3}, journal = {Journal of sensors and sensor systems}, number = {1}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, issn = {2194-878X}, doi = {10.5194/jsss-3-87-2014}, pages = {87 -- 95}, year = {2014}, abstract = {Today, the assembly of laser systems requires a large share of manual operations due to its complexity regarding the optimal alignment of optics. Although the feasibility of automated alignment of laser optics has been shown in research labs, the development effort for the automation of assembly does not meet economic requirements - especially for low-volume laser production. This paper presents a model-based and sensor-integrated assembly execution approach for flexible assembly cells consisting of a macro-positioner covering a large workspace and a compact micromanipulator with camera attached to the positioner. In order to make full use of available models from computer-aided design (CAD) and optical simulation, sensor systems at different levels of accuracy are used for matching perceived information with model data. This approach is named "chain of refined perception", and it allows for automated planning of complex assembly tasks along all major phases of assembly such as collision-free path planning, part feeding, and active and passive alignment. The focus of the paper is put on the in-process image-based metrology and information extraction used for identifying and calibrating local coordinate systems as well as the exploitation of that information for a part feeding process for micro-optics. Results will be presented regarding the processes of automated calibration of the robot camera as well as the local coordinate systems of part feeding area and robot base.}, language = {en} } @article{GebhardtFateri2013, author = {Gebhardt, Andreas and Fateri, Miranda}, title = {3D printing and its applications}, series = {RTejournal - Forum f{\"u}r Rapid Technologie}, volume = {10}, journal = {RTejournal - Forum f{\"u}r Rapid Technologie}, number = {1}, publisher = {Fachhochschule Aachen}, address = {Aachen}, issn = {1614-0923}, url = {http://nbn-resolving.de/urn:nbn:de:0009-2-35626}, year = {2013}, abstract = {Eine zunehmende Anzahl von Artikeln in Publikumszeitschriften und Journalen r{\"u}ckt die direkte Herstellung von Bauteilen und Figuren immer mehr in das Bewusstsein einer breiten {\"O}ffentlichkeit. Leider ergibt sich nur selten ein einigermaßen vollst{\"a}ndiges Bild davon, wie und in welchen Lebensbereichen diese Techniken unseren Alltag ver{\"a}ndern werden. Das liegt auch daran, dass die meisten Artikel sehr technisch gepr{\"a}gt sind und sich nur punktuell auf Beispiele st{\"u}tzen. Dieser Beitrag geht von den Bed{\"u}rfnissen der Menschen aus, wie sie z.B. in der Maslow'schen Bed{\"u}rfnispyramide strukturiert dargestellt sind und unterstreicht dadurch, dass 3D Printing (oder Additive Manufacturing resp. Rapid Prototyping) bereits alle Lebensbereiche erfasst hat und im Begriff ist, viele davon zu revolutionieren.}, language = {en} } @article{RamazaniLiMukherjeeetal.2013, author = {Ramazani, Ali and Li, Yang and Mukherjee, Krishnendu and Prahl, Ulrich and Bleck, Wolfgang and Abdurakhmanov, Aydemir and Schleser, Markus and Reisgen, Uwe}, title = {Microstructure evolution simulation in hot rolled DP600 steel during gas metal arc welding}, series = {Computational materials science}, volume = {Vol. 68}, journal = {Computational materials science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-0801 (E-Book); 0927-0256 (Print)}, pages = {107 -- 116}, year = {2013}, language = {en} } @article{FateriHoetterGebhardt2012, author = {Fateri, Miranda and H{\"o}tter, Jan-Steffen and Gebhardt, Andreas}, title = {Experimental and Theoretical Investigation of Buckling Deformation of Fabricated Objects by Selective Laser Melting}, series = {Physics Procedia}, volume = {39}, journal = {Physics Procedia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1875-3892}, doi = {10.1016/j.phpro.2012.10.062}, pages = {464 -- 470}, year = {2012}, abstract = {Although Selective Laser Melting (SLM) process is an innovative manufacturing method, there are challenges such as inferior mechanical properties of fabricated objects. Regarding this, buckling deformation which is caused by thermal stress is one of the undesired mechanical properties which must be alleviated. As buckling deformation is more observable in hard to process materials, silver is selected to be studied theoretically and experimentally for this paper. Different scanning strategies are utilized and a Finite Element Method (FEM) is applied to calculate the temperature gradient in order to determine its effect on the buckling deformation of the objects from experiments.}, language = {en} } @article{ReisgenSchleserMokrovetal.2012, author = {Reisgen, Uwe and Schleser, Markus and Mokrov, Oleg and Ahmed, Essam}, title = {Statistical modeling of laser welding of DP/TRIP steel sheets}, series = {Optics and laser technology}, volume = {44}, journal = {Optics and laser technology}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-2545 (E-Journal); 0030-3992 (Print); 0308-4280 (Print)}, doi = {10.1016/j.optlastec.2011.05.025}, pages = {92 -- 101}, year = {2012}, abstract = {In this research work, a statistical analysis of the CO2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets was done using response surface methodology. The analysis considered the effect of laser power (2-2.2 kW), welding speed (40-50 mm/s) and focus position (-1 to 0 mm) on the heat input, the weld bead geometry, uniaxial tensile strength, formability limited dome height and welding operation cost. The experimental design was based on Box-Behnken design using linear and quadratic polynomial equations for predicting the mathematical models. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used and the welding speed is the most significant parameter during the welding process.}, language = {en} } @article{ReisgenSchleserMokrovetal.2012, author = {Reisgen, Uwe and Schleser, Markus and Mokrov, Oleg and Ahmed, Essam}, title = {Optimization of laser welding of DP/TRIP steel sheets using statistical approach}, series = {Optics and laser technology}, volume = {44}, journal = {Optics and laser technology}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1879-2545 (E-Journal); 0030-3992 (Print); 0308-4280 (Print)}, doi = {10.1016/j.optlastec.2011.06.028}, pages = {255 -- 262}, year = {2012}, abstract = {Generally, the quality of a weld joint is directly influenced by the welding input parameter settings. Selection of proper process parameters is important to obtain the desired weld bead profile and quality. In this research work, numerical and graphical optimization techniques of the CO2 laser beam welding of dual phase (DP600)/transformation induced plasticity (TRIP700) steel sheets were carried out using response surface methodology (RSM) based on Box-Behnken design. The procedure was established to improve the weld quality, increase the productivity and minimize the total operation cost by considering the welding parameters range of laser power (2-2.2 kW), welding speed (40-50 mm/s) and focus position (-1 to 0 mm). It was found that, RSM can be considered as a powerful tool in experimental welding optimization, even when the experimenter does not have a model for the process. Strong, efficient and low cost weld joints could be achieved using the optimum welding conditions.}, language = {en} }