@article{EilmannBuchmannSiegwolfetal.2010, author = {Eilmann, Britta and Buchmann, Nina and Siegwolf, Rolf and Saurer, Matthias and Cherubini, Paolo and Rigling, Andreas}, title = {Fast response of Scots pine to improved water availability reflected in tree-ring width and δ13C}, series = {Plant, Cell and Environment}, volume = {33}, journal = {Plant, Cell and Environment}, number = {8}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {1365-3040 (Online)}, doi = {10.1111/j.1365-3040.2010.02153.x}, pages = {1351 -- 1360}, year = {2010}, abstract = {Drought-induced forest decline, like the Scots pine mortality in inner-Alpine valleys, will gain in importance as the frequency and severity of drought events are expected to increase. To understand how chronic drought affects tree growth and tree-ring δ13C values, we studied mature Scots pine in an irrigation experiment in an inner-Alpine valley. Tree growth and isotope analyses were carried out at the annual and seasonal scale. At the seasonal scale, maximum δ13C values were measured after the hottest and driest period of the year, and were associated with decreasing growth rates. Inter-annual δ13C values in early- and latewood showed a strong correlation with annual climatic conditions and an immediate decrease as a response to irrigation. This indicates a tight coupling between wood formation and the freshly produced assimilates for trees exposed to chronic drought. This rapid appearance of the isotopic signal is a strong indication for an immediate and direct transfer of newly synthesized assimilates for biomass production. The fast appearance and the distinct isotopic signal suggest a low availability of old stored carbohydrates. If this was a sign for C-storage depletion, an increasing mortality could be expected when stressors increase the need for carbohydrate for defence, repair or regeneration.}, language = {en} } @article{EilmanndeVriesdenOudenetal.2013, author = {Eilmann, Britta and de Vries, Sven M. G. and den Ouden, Jan and Mohren, Godefridus M. J. and Sauren, Pascal and Sass-Klaassen, Ute G. W.}, title = {Origin matters! Difference in drought tolerance and productivity of coastal Douglas-fir (Pseudotsuga menziesii (Mirb.)) provenances}, series = {Forest Ecology and Management}, volume = {2013}, journal = {Forest Ecology and Management}, number = {302}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7042 (Online)}, doi = {doi:10.1016/j.foreco.2013.03.031}, pages = {133 -- 143}, year = {2013}, language = {en} } @article{EilmannDobbertinRigling2013, author = {Eilmann, Britta and Dobbertin, Matthias and Rigling, Andreas}, title = {Growth response of Scots pine with different crown transparency status to drought release}, series = {Annals of Forest Science}, volume = {70}, journal = {Annals of Forest Science}, number = {7}, publisher = {Springer}, address = {Cham}, issn = {1286-4560 (Print)}, doi = {10.1007/s13595-013-0310-z}, pages = {685 -- 693}, year = {2013}, language = {en} } @article{EilmannRigling2012, author = {Eilmann, Britta and Rigling, Andreas}, title = {Tree-growth analyses to estimate tree species' drought tolerance}, series = {Tree Physiology}, volume = {32}, journal = {Tree Physiology}, number = {2}, editor = {Abrams, Marc}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0829-318X (Print)}, doi = {10.1093/treephys/tps004}, pages = {178 -- 187}, year = {2012}, abstract = {Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree species' potential for surviving future aggravated environmental conditions is rather demanding. The aim of this study was to find a tree-ring-based method suitable for identifying very drought-tolerant species, particularly potential substitute species for Scots pine (Pinus sylvestris L.) in Valais. In this inner-Alpine valley, Scots pine used to be the dominating species for dry forests, but today it suffers from high drought-induced mortality. We investigate the growth response of two native tree species, Scots pine and European larch (Larix decidua Mill.), and two non-native species, black pine (Pinus nigra Arnold) and Douglas fir (Pseudotsuga menziesii Mirb. var. menziesii), to drought. This involved analysing how the radial increment of these species responded to increasing water shortage (abandonment of irrigation) and to increasingly frequent drought years. Black pine and Douglas fir are able to cope with drought better than Scots pine and larch, as they show relatively high radial growth even after irrigation has been stopped and a plastic growth response to drought years. European larch does not seem to be able to cope with these dry conditions as it lacks the ability to recover from drought years. The analysis of trees' short-term response to extreme climate events seems to be the most promising and suitable method for detecting how tolerant a tree species is towards drought. However, combining all the methods used in this study provides a complete picture of how water shortage could limit species.}, language = {en} } @article{EilmannSterckWegneretal.2014, author = {Eilmann, Britta and Sterck, Frank J. and Wegner, L. and de Vries, Sven M. G. and von Arx, G. and Mohren, Godefridus M. J. and den Ouden, Jan and Sass-Klaassen, Ute G. W.}, title = {Wood structural differences between northern and southern beech provenances growing at a moderate site}, series = {Tree Physiology}, volume = {34}, journal = {Tree Physiology}, number = {8}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1758-4469 (Online)}, doi = {10.1093/treephys/tpu069}, pages = {882 -- 893}, year = {2014}, language = {en} } @article{EilmannWeberRiglingetal.2006, author = {Eilmann, Britta and Weber, Pascale and Rigling, Andreas and Eckstein, Dieter}, title = {Growth reactions of Pinus sylvestris L. and Quercus pubescens Willd. to drought years at a xeric site in Valais, Switzerland}, series = {Dendrochronologia}, volume = {23}, journal = {Dendrochronologia}, number = {3}, issn = {1612-0051 (Online)}, doi = {doi:10.1016/j.dendro.2005.10.002}, pages = {121 -- 132}, year = {2006}, language = {en} } @article{EilmannZweifelBuchmannetal.2009, author = {Eilmann, Britta and Zweifel, Roman and Buchmann, Nina and Fonti, Patrick and Rigling, Andreas}, title = {Drought-induced adaptation of the xylem in Scots pine and pubescent oak}, series = {Tree Physiology}, volume = {29}, journal = {Tree Physiology}, number = {8}, publisher = {Heron}, address = {Victoria, BC}, issn = {0829-318X (Print)}, doi = {10.1093/treephys/tpp035}, pages = {1011 -- 1020}, year = {2009}, language = {en} } @article{EilmannZweifelBuchmannetal.2011, author = {Eilmann, Britta and Zweifel, Roman and Buchmann, Nina and Graf Pannatier, Elisabeth and Rigling, Andreas}, title = {Drought alters timing, quantity, and quality of wood formation in Scots pine}, series = {Journal of Experimental Botany}, volume = {62}, journal = {Journal of Experimental Botany}, number = {8}, publisher = {Oxford University Press}, address = {Oxford}, issn = {1460-2431 (Online)}, doi = {10.1093/jxb/erq443}, pages = {2763 -- 2771}, year = {2011}, language = {en} } @article{ElBerguiAbouabdillahBouriougetal.2023, author = {El Bergui, Omnia and Abouabdillah, Aziz and Bourioug, Mohamed and Schmitz, Dominik and Biel, Markus and Aboudrare, Abdellah and Krauss, Manuel and Jomaa, Ahlem and Romuli, Sebastian and M{\"u}ller, Joachim and Fagroud, Mustapha and Bouabid, Rachid}, title = {Innovative solutions for drought: Evaluating hydrogel application on onion cultivation (Allium cepa) in Morocco}, series = {Water}, volume = {15}, journal = {Water}, number = {11}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/w15111972}, pages = {Artikel 1972}, year = {2023}, abstract = {Throughout the last decade, and particularly in 2022, water scarcity has become a critical concern in Morocco and other Mediterranean countries. The lack of rainfall during spring was worsened by a succession of heat waves during the summer. To address this drought, innovative solutions, including the use of new technologies such as hydrogels, will be essential to transform agriculture. This paper presents the findings of a study that evaluated the impact of hydrogel application on onion (Allium cepa) cultivation in Meknes, Morocco. The treatments investigated in this study comprised two different types of hydrogel-based soil additives (Arbovit® polyacrylate and Huminsorb® polyacrylate), applied at two rates (30 and 20 kg/ha), and irrigated at two levels of water supply (100\% and 50\% of daily crop evapotranspiration; ETc). Two control treatments were included, without hydrogel application and with both water amounts. The experiment was conducted in an open field using a completely randomized design. The results indicated a significant impact of both hydrogel-type dose and water dose on onion plant growth, as evidenced by various vegetation parameters. Among the hydrogels tested, Huminsorb® Polyacrylate produced the most favorable outcomes, with treatment T9 (100\%, HP, 30 kg/ha) yielding 70.55 t/ha; this represented an increase of 11 t/ha as compared to the 100\% ETc treatment without hydrogel application. Moreover, the combination of hydrogel application with 50\% ETc water stress showed promising results, with treatment T4 (HP, 30 kg, 50\%) producing almost the same yield as the 100\% ETc treatment without hydrogel while saving 208 mm of water.}, language = {en} } @inproceedings{ElMoussaouiKassmiAlexopoulosetal.2021, author = {El Moussaoui, Noureddine and Kassmi, Khalil and Alexopoulos, Spiros and Schwarzer, Klemens and Chayeb, Hamid and Bachiri, Najib}, title = {Simulation studies on a new innovative design of a hybrid solar distiller MSDH alimented with a thermal and photovoltaic energy}, series = {Materialstoday: Proceedings}, volume = {45}, booktitle = {Materialstoday: Proceedings}, number = {8}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2214-7853}, doi = {10.1016/j.matpr.2021.03.115}, pages = {7653 -- 7660}, year = {2021}, abstract = {In this paper, we present the structure, the simulation the operation of a multi-stage, hybrid solar desalination system (MSDH), powered by thermal and photovoltaic (PV) (MSDH) energy. The MSDH system consists of a lower basin, eight horizontal stages, a field of four flat thermal collectors with a total area of 8.4 m2, 3 Kw PV panels and solar batteries. During the day the system is heated by thermal energy, and at night by heating resistors, powered by solar batteries. These batteries are charged by the photovoltaic panels during the day. More specifically, during the day and at night, we analyse the temperature of the stages and the production of distilled water according to the solar irradiation intensity and the electric heating power, supplied by the solar batteries. The simulations were carried out in the meteorological conditions of the winter month (February 2020), presenting intensities of irradiance and ambient temperature reaching 824 W/m2 and 23 °C respectively. The results obtained show that during the day the system is heated by the thermal collectors, the temperature of the stages and the quantity of water produced reach 80 °C and 30 Kg respectively. At night, from 6p.m. the system is heated by the electric energy stored in the batteries, the temperature of the stages and the quantity of water produced reach respectively 90 °C and 104 Kg for an electric heating power of 2 Kw. Moreover, when the electric power varies from 1 Kw to 3 Kw the quantity of water produced varies from 92 Kg to 134 Kg. The analysis of these results and their comparison with conventional solar thermal desalination systems shows a clear improvement both in the heating of the stages, by 10\%, and in the quantity of water produced by a factor of 3.}, language = {en} }