@inproceedings{EggertChwallekWollf2022, author = {Eggert, Mathias and Chwallek, Constanze and Wollf, Frederik}, title = {The role of environmental factors for the success of digital start-ups}, series = {ECIS 2022 Research Papers}, booktitle = {ECIS 2022 Research Papers}, pages = {16 Seiten}, year = {2022}, abstract = {Digital start-ups are perceived as an engine for innovation and job promotor. While success factors for non-IT start-ups have already been extensively researched, this study sheds light on digital entrepreneurs, whose business model relies primarily on services based on digital technologies. Applying the Grounded Theory method, we identify relevant environmental success factors for digital entrepreneurs. The study's research contribution is threefold. First, we provide 16 relevant and less relevant environmental success factors, which enables a comparison with prior identified factors. We found out that several prior environmental success factors, such as accessibility to transportation or the availability of land and facilities are less relevant for a digital entrepreneur. Second, we derive and discuss hypotheses for the influence of these factors on digital start-up success. Third, we present a theoretical model that lays the foundation for explaining the environmental influence on digital entrepreneurship success.}, language = {de} } @inproceedings{MaurerMiskiwAcostaetal.2023, author = {Maurer, Florian and Miskiw, Kim K. and Acosta, Rebeca Ramirez and Harder, Nick and Sander, Volker and Lehnhoff, Sebastian}, title = {Market abstraction of energy markets and policies - application in an agent-based modeling toolbox}, series = {EI.A 2023: Energy Informatics}, booktitle = {EI.A 2023: Energy Informatics}, editor = {Jorgensen, Bo Norregaard and Pereira da Silva, Luiz Carlos and Ma, Zheng}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-48651-7 (Print)}, doi = {10.1007/978-3-031-48652-4_10}, pages = {139 -- 157}, year = {2023}, abstract = {In light of emerging challenges in energy systems, markets are prone to changing dynamics and market design. Simulation models are commonly used to understand the changing dynamics of future electricity markets. However, existing market models were often created with specific use cases in mind, which limits their flexibility and usability. This can impose challenges for using a single model to compare different market designs. This paper introduces a new method of defining market designs for energy market simulations. The proposed concept makes it easy to incorporate different market designs into electricity market models by using relevant parameters derived from analyzing existing simulation tools, morphological categorization and ontologies. These parameters are then used to derive a market abstraction and integrate it into an agent-based simulation framework, allowing for a unified analysis of diverse market designs. Furthermore, we showcase the usability of integrating new types of long-term contracts and over-the-counter trading. To validate this approach, two case studies are demonstrated: a pay-as-clear market and a pay-as-bid long-term market. These examples demonstrate the capabilities of the proposed framework.}, language = {en} } @inproceedings{ReisgenSchleserScheiketal.2011, author = {Reisgen, Uwe and Schleser, Markus and Scheik, Sven and Michaeli, Walter and Gr{\"o}nlund, Oliver and Neuß, Andreas and Wunderle, Johannes and Poprawe, Reinhart and R{\"o}sner, A. and Bobzin, Kirsten and Schl{\"a}fer, Thomas and Theiß, Sebastian and Kutschmann, Pia and Haberstroh, Edmund and Flock, Dustin and B{\"u}hrig-Polaczek, Andreas and Jakob, M.}, title = {Novel process chains for the production of plastics/metal-hybrids}, series = {17th International Conference on Concurrent Enterprising (ICE 2011) : Aachen, Germany, 20 - 22 June 2011}, booktitle = {17th International Conference on Concurrent Enterprising (ICE 2011) : Aachen, Germany, 20 - 22 June 2011}, editor = {Thoben, Klaus-Dieter}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {Forschungsinstitut f{\"u}r Rationalisierung ; International Conference on Concurrent Enterprising <17, 2011, Aachen>}, isbn = {978-1-457-70772-8 ; 978-3-943024-05-0}, pages = {596 -- 604}, year = {2011}, language = {en} } @inproceedings{NowackRoethBuehrigPolaczeketal.2008, author = {Nowack, N. and R{\"o}th, Thilo and B{\"u}hrig-Polaczek, Andreas and Klaus, G.}, title = {Advanced Sheet Metal Components Reinforced by Light Metal Cast Structures}, series = {Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11]}, booktitle = {Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11]}, number = {2}, editor = {Hirsch, J{\"u}rgen}, isbn = {978-3-527-32367-8}, pages = {2374 -- 2381}, year = {2008}, language = {en} } @inproceedings{MaurerNitschKochemsetal.2024, author = {Maurer, Florian and Nitsch, Felix and Kochems, Johannes and Schimeczek, Christoph and Sander, Volker and Lehnhoff, Sebastian}, title = {Know your tools - a comparison of two open agent-based energy market models}, series = {2024 20th International Conference on the European Energy Market (EEM)}, booktitle = {2024 20th International Conference on the European Energy Market (EEM)}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1109/EEM60825.2024.10609021}, pages = {8 Seiten}, year = {2024}, abstract = {Due to the transition to renewable energies, electricity markets need to be made fit for purpose. To enable the comparison of different energy market designs, modeling tools covering market actors and their heterogeneous behavior are needed. Agent-based models are ideally suited for this task. Such models can be used to simulate and analyze changes to market design or market mechanisms and their impact on market dynamics. In this paper, we conduct an evaluation and comparison of two actively developed open-source energy market simulation models. The two models, namely AMIRIS and ASSUME, are both designed to simulate future energy markets using an agent-based approach. The assessment encompasses modelling features and techniques, model performance, as well as a comparison of model results, which can serve as a blueprint for future comparative studies of simulation models. The main comparison dataset includes data of Germany in 2019 and simulates the Day-Ahead market and participating actors as individual agents. Both models are comparable close to the benchmark dataset with a MAE between 5.6 and 6.4 €/MWh while also modeling the actual dispatch realistically.}, language = {en} } @inproceedings{MaurerSejdijaSander2024, author = {Maurer, Florian and Sejdija, Jonathan and Sander, Volker}, title = {Decentralized energy data storages through an Open Energy Database Server}, doi = {10.5281/zenodo.10607895}, pages = {5 Seiten}, year = {2024}, abstract = {In the research domain of energy informatics, the importance of open datais rising rapidly. This can be seen as various new public datasets are created andpublished. Unfortunately, in many cases, the data is not available under a permissivelicense corresponding to the FAIR principles, often lacking accessibility or reusability.Furthermore, the source format often differs from the desired data format or does notmeet the demands to be queried in an efficient way. To solve this on a small scale atoolbox for ETL-processes is provided to create a local energy data server with openaccess data from different valuable sources in a structured format. So while the sourcesitself do not fully comply with the FAIR principles, the provided unique toolbox allows foran efficient processing of the data as if the FAIR principles would be met. The energydata server currently includes information of power systems, weather data, networkfrequency data, European energy and gas data for demand and generation and more.However, a solution to the core problem - missing alignment to the FAIR principles - isstill needed for the National Research Data Infrastructure.}, language = {en} } @inproceedings{LaoBuehrigPolaczekRoeth2011, author = {Lao, B. and B{\"u}hrig-Polaczek, Andreas and R{\"o}th, Thilo}, title = {Funktionsintegrierte Leichtbaustrukturen in gussintensiver Metall-Hybridbauweise}, series = {Verbundwerkstoffe und Werkstoffverbunde: Tagungsband zum 18. Symposium ; 30.03.2011 bis 01.04.2011, Chemnitz}, booktitle = {Verbundwerkstoffe und Werkstoffverbunde: Tagungsband zum 18. Symposium ; 30.03.2011 bis 01.04.2011, Chemnitz}, editor = {Wielage, Bernhard}, publisher = {Eigenverlag}, address = {Chemnitz}, isbn = {978-3-00-033801-4}, pages = {413 -- 421}, year = {2011}, language = {de} } @inproceedings{DiIorioNobileStapenhorst2010, author = {Di Iorio, Marina and Nobile, Maria Luna and Stapenhorst, Carolin}, title = {Martinella}, series = {Edifici alti e paesaggio}, booktitle = {Edifici alti e paesaggio}, editor = {Bovati, Marco and Di Franco, Andrea}, publisher = {Maggioli}, address = {Santarcangelo di Romagna}, isbn = {978-88-387-4434-1}, pages = {191 -- 202}, year = {2010}, language = {it} } @inproceedings{WilbringEnningPfaffetal.2019, author = {Wilbring, Daniela and Enning, Manfred and Pfaff, Raphael and Schmidt, Bernd}, title = {Neue Perspektiven f{\"u}r die Bahn in der Produktions- und Distributionslogistik durch Prozessautomation}, series = {IRSA 2019: Tagungsband, Proceedings}, booktitle = {IRSA 2019: Tagungsband, Proceedings}, editor = {de Doncker, Rik W. and Nießen, Nils and Schindler, Christian}, publisher = {RWTH Aachen}, address = {Aachen}, doi = {10.18154/RWTH-2020-00014}, pages = {128 -- 142}, year = {2019}, abstract = {Deutschland braucht mehr Eisenbahn um CO2-Emissionen aus dem Verkehr zu reduzieren. Sie muss zum R{\"u}ckgrat aktueller Logistikprozesse, z.B. bei Kaufmannsg{\"u}tern und E-Commerce, werden. Dies geht nicht ohne neuartige betriebliche Konzepte und eine Transformation des G{\"u}terwagens von einem „dummen St{\"u}ck Stahl" zu einem modernen Werkzeug der Logistik. Als „G{\"u}terwagen 4.0" wird ein kommunikativer und kooperativer G{\"u}terwagen verstanden, der die Voraussetzung zur Automatisierung aller Prozesse der Zugvorbereitung bereitstellt, sich aber ansonsten vollkommen kompatibel mit heutigen Betriebsverfahren im Hauptlauf pr{\"a}sentiert. Durch Kommunikation zwischen G{\"u}terwagen und umgebenden intelligenten Systemen im Sinne eines „Internet der Dinge" gelingt damit unter Anderem die Realisierung hoch effizienter Gleisanschlussverkehre, die der G{\"u}terbahn neue M{\"a}rkte abseits der klassisch bahn-affinen Verkehre erschließen und letztlich den Wandel zu einer nachhaltigen G{\"u}termobilit{\"a}t f{\"o}rdern.}, language = {de} } @inproceedings{PfaffSchmidtWilbringetal.2019, author = {Pfaff, Raphael and Schmidt, Bernd and Wilbring, Daniela and Franzen, Julian}, title = {Wagon4.0 - the smart wagon for improved integration into Industry 4.0 plants}, series = {Proceedings of the International Heavy Haul Association STS Conference 2019}, booktitle = {Proceedings of the International Heavy Haul Association STS Conference 2019}, pages = {7 Seiten}, year = {2019}, abstract = {In many instances, freight vehicles exchange load or information with plants that are or will soon be Industry4.0 plants. The Wagon4.0 concept, as developed in close cooperation with e.g. port or mine operations, offers a maximum in railway operational efficiency while providing strong business cases already in the respective plant interaction. The Wagon4.0 consists of main components, a power supply, data network, sensors, actuators and an operating system, the so called WagonOS. The Wagon OS is implemented in a granular, self-sufficient manner, to allow basic features such as WiFi-Mesh and train christening in remote areas without network connection. Furthermore, the granularity of the operating system allows to extend the familiar app concept to freight rail rolling stock, making it possible to use specialised actuators for certain applications, e.g. an electrical parking brake or an auxiliary drive. In order to facilitate migration to the Wagon4.0 for existing fleets, a migration concept featuring five levels of technical adaptation was developed. The present paper investigates the benefits of Wagon4.0-implementations for the particular challenges of heavy haul operations by focusing on train christening, ep-assisted braking, autonomous last mile and traction boost operation as well as improved maintenance schedules}, language = {en} }