@article{GunRizkovLevetal.2008, author = {Gun, Jenny and Rizkov, Dan and Lev, Ovadia and Abouzar, Maryam H. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Oxygen plasma-treated gold nanoparticle-based field-effect devices as transducer structures for bio-chemical sensing}, series = {Microchimica Acta. 164 (2008), H. 3-4}, journal = {Microchimica Acta. 164 (2008), H. 3-4}, isbn = {1436-5073}, pages = {395 -- 404}, year = {2008}, language = {en} } @article{PoghossianYoshinobuSchoening2003, author = {Poghossian, Arshak and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Flow-velocity microsensors based on semiconductor field-effect structures}, series = {Sensors. 3 (2003), H. 7}, journal = {Sensors. 3 (2003), H. 7}, isbn = {1424-8220}, pages = {202 -- 212}, year = {2003}, language = {en} } @article{DigelDemirciTemizArtmannetal.2004, author = {Digel, Ilya and Demirci, Taylan and Temiz Artmann, Ayseg{\"u}l and Nishikawa, K.}, title = {Free Radical Nature of the Bactericidal Effect of Plasma-Generated Cluster Ions (PCIs)}, series = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, journal = {Biomedizinische Technik. 49 (2004), H. Erg.-Bd. 2}, isbn = {0932-4666}, pages = {982 -- 983}, year = {2004}, language = {en} } @incollection{PoghossianSchoening2006, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Silicon-based chemical and biological field-effect sensors}, series = {Encyclopedia of Sensors. Vol. 9 S - Sk}, booktitle = {Encyclopedia of Sensors. Vol. 9 S - Sk}, publisher = {ASP, American Scientific Publ.}, address = {Stevenson Ranch, Calif.}, isbn = {1-58883-065-9}, pages = {463 -- 534}, year = {2006}, language = {en} } @article{PoghossianAbouzarChristiaensetal.2008, author = {Poghossian, Arshak and Abouzar, Maryam H. and Christiaens, P. and Williams, O. A. and Haenen, K. and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Sensing charged macromolecules with nanocrystalline diamond-based field-effect capacitive sensors}, series = {Journal of Contemporary Physics. 43 (2008), H. 2}, journal = {Journal of Contemporary Physics. 43 (2008), H. 2}, isbn = {1934-9378}, pages = {77 -- 81}, year = {2008}, language = {en} } @article{IngebrandtHanNakamuraetal.2007, author = {Ingebrandt, S. and Han, Y. and Nakamura, F. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Offenh{\"a}usser, A.}, title = {Label-free detection of single nucleotide polymorphisms utilizing the differential transfer function of field-effect transistors}, series = {Biosensors and Bioelectronics. 22 (2007), H. 12}, journal = {Biosensors and Bioelectronics. 22 (2007), H. 12}, isbn = {0956-5663}, pages = {2834 -- 2840}, year = {2007}, language = {en} } @inproceedings{TranStaat2014, author = {Tran, Thanh Ngoc and Staat, Manfred}, title = {Uncertain multimode failure and limit analysis of shells}, series = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, booktitle = {11th World Congress on Computational Mechanics (WCCM XI) ; 5th European Conference on Computational Mechanics (ECCM V) ; 6th European Conference on Computational Fluid Dynamics (ECFD VI) ; July 20-25, 2014, Barcelona}, editor = {Onate, E.}, organization = {World Congress on Computational Mechanics <11, 2014, Barcelona>}, pages = {1 -- 12}, year = {2014}, language = {en} } @article{BronderWuPoghossianetal.2014, author = {Bronder, Thomas and Wu, Chunsheng and Poghossian, Arshak and Werner, Frederik and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Label-free detection of DNA hybridization with light-addressable potentiometric sensors: comparison of various DNA-immobilization strategies}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.647}, pages = {755 -- 758}, year = {2014}, abstract = {Light-addressable potentiometric sensors (LAPS) consisting of a p-Si-SiO2 and p-Si-SiO2-Au structure, respectively, have been tested for a label-free electrical detection of DNA (deoxyribonucleic acid) hybridization. Three different strategies for immobilizing single-stranded probe DNA (ssDNA) molecules on a LAPS surface have been studied and compared: (a) immobilization of thiol-modified ssDNA on the patterned Au surface via gold-thiol bond, (b) covalent immobilization of amino-modified ssDNA onto the SiO2 surface functionalized with 3-aminopropyltriethoxysilane and (c) layer-by-layer adsorption of negatively charged ssDNA on a positively charged weak polyelectrolyte layer of poly(allylamine hydrochloride).}, language = {en} } @article{KatzPoghossianSchoening2017, author = {Katz, Evgeny and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Enzyme-based logic gates and circuits - analytical applications and interfacing with electronics}, series = {Analytical and Bioanalytical Chemistry}, volume = {409}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer}, address = {Berlin}, issn = {1618-2650}, doi = {10.1007/s00216-016-0079-7}, pages = {81 -- 94}, year = {2017}, abstract = {The paper is an overview of enzyme-based logic gates and their short circuits, with specific examples of Boolean AND and OR gates, and concatenated logic gates composed of multi-step enzyme-biocatalyzed reactions. Noise formation in the biocatalytic reactions and its decrease by adding a "filter" system, converting convex to sigmoid response function, are discussed. Despite the fact that the enzyme-based logic gates are primarily considered as components of future biomolecular computing systems, their biosensing applications are promising for immediate practical use. Analytical use of the enzyme logic systems in biomedical and forensic applications is discussed and exemplified with the logic analysis of biomarkers of various injuries, e.g., liver injury, and with analysis of biomarkers characteristic of different ethnicity found in blood samples on a crime scene. Interfacing of enzyme logic systems with modified electrodes and semiconductor devices is discussed, giving particular attention to the interfaces functionalized with signal-responsive materials. Future perspectives in the design of the biomolecular logic systems and their applications are discussed in the conclusion.}, language = {en} } @article{PoghossianSchoening2020, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect eis chemical sensors and biosensors: A status report}, series = {Sensors}, volume = {20}, journal = {Sensors}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s20195639}, pages = {Artikel 5639}, year = {2020}, abstract = {Electrolyte-insulator-semiconductor (EIS) field-effect sensors belong to a new generation of electronic chips for biochemical sensing, enabling a direct electronic readout. The review gives an overview on recent advances and current trends in the research and development of chemical sensors and biosensors based on the capacitive field-effect EIS structure—the simplest field-effect device, which represents a biochemically sensitive capacitor. Fundamental concepts, physicochemical phenomena underlying the transduction mechanism and application of capacitive EIS sensors for the detection of pH, ion concentrations, and enzymatic reactions, as well as the label-free detection of charged molecules (nucleic acids, proteins, and polyelectrolytes) and nanoparticles, are presented and discussed.}, language = {en} }