@article{Laack1984, author = {Laack, Walter van}, title = {Juvenile Osteochondronekrosen - Wesen und m{\"o}gliche Entstehungsursachen}, series = {Zeitschrift f{\"u}r Allgemeinmedizin ; ZFA. 60 (1984)}, journal = {Zeitschrift f{\"u}r Allgemeinmedizin ; ZFA. 60 (1984)}, isbn = {0341-9835}, pages = {1432}, year = {1984}, language = {de} } @article{PhamStaat2013, author = {Pham, Phu Tinh and Staat, Manfred}, title = {An Upper Bound Algorithm for Limit and Shakedown Analysis of Bounded Linearly Kinematic Hardening Structures}, series = {Limit State of Materials and Structures : Direct Methods 2. Saxc{\´e}, G{\´e}ry de (Hrsg.)}, journal = {Limit State of Materials and Structures : Direct Methods 2. Saxc{\´e}, G{\´e}ry de (Hrsg.)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-007-5424-9}, pages = {71 -- 87}, year = {2013}, language = {en} } @book{Laack2000, author = {Laack, Walter van}, title = {Key to Eternity / Walter van Laack. [Transl. by Anneliese Wolstenholme]}, publisher = {van Laack}, address = {Aachen}, isbn = {978-3-8311-0344-7}, pages = {256 S.}, year = {2000}, language = {en} } @article{StaatVu2012, author = {Staat, Manfred and Vu, Duc Khoi}, title = {Limit analysis of flaws in pressurized pipes and cylindrical vessels Part II: Circumferential defects}, series = {Engineering Fracture Mechanics ; 97(2013), H. 1}, volume = {97}, journal = {Engineering Fracture Mechanics ; 97(2013), H. 1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-7944}, doi = {10.1016/j.engfracmech.2012.05.017}, pages = {314 -- 333}, year = {2012}, abstract = {Upper and lower bound theorems of limit analyses have been presented in part I of the paper. Part II starts with the finite element discretization of these theorems and demonstrates how both can be combined in a primal-dual optimization problem. This recently proposed numerical method is used to guide the development of a new class of closed-form limit loads for circumferential defects, which show that only large defects contribute to plastic collapse with a rapid loss of strength with increasing crack sizes. The formulae are compared with primal-dual FEM limit analyses and with burst tests. Even closer predictions are obtained with iterative limit load solutions for the von Mises yield function and for the Tresca yield function. Pressure loading of the faces of interior cracks in thick pipes reduces the collapse load of circumferential defects more than for axial flaws. Axial defects have been treated in part I of the paper.}, language = {en} } @article{LaackAlbrecht1987, author = {Laack, Walter van and Albrecht, T.}, title = {Mikrobiologische Untersuchungen auf Keimfreiheit bei physikalischen Anwendungen}, series = {Orthop{\"a}dische Praxis. 23 (1987)}, journal = {Orthop{\"a}dische Praxis. 23 (1987)}, isbn = {0030-588x}, pages = {73}, year = {1987}, language = {de} } @article{StulpeRuch1998, author = {Stulpe, Werner and Ruch, Ernst}, title = {Proof of the Mixing Theorem for Statistical Systems in Classical Physics. Ruch, Ernst; Stulpe, Werner}, series = {Acta Applicandae Mathematicae. 53 (1998), H. 3}, journal = {Acta Applicandae Mathematicae. 53 (1998), H. 3}, isbn = {1572-9036}, pages = {329 -- 352}, year = {1998}, language = {en} } @article{LaackRefisch1987, author = {Laack, Walter van and Refisch, A.}, title = {Beeinflussen Beinhalter die Knieseitenbandstabilit{\"a}t bei der Arthroskopie?}, series = {Orthop{\"a}dische Praxis. 23 (1987)}, journal = {Orthop{\"a}dische Praxis. 23 (1987)}, isbn = {0030-588x}, pages = {434}, year = {1987}, language = {de} } @article{OezsoyluKizildagSchoeningetal.2019, author = {{\"O}zsoylu, Dua and Kizildag, Sefa and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Effect of plasma treatment on the sensor properties of a light-addressable potentiometric sensor (LAPS)}, series = {physica status solidi a : applications and materials sciences}, volume = {216}, journal = {physica status solidi a : applications and materials sciences}, number = {20}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201900259}, pages = {8 Seiten}, year = {2019}, abstract = {A light-addressable potentiometric sensor (LAPS) is a field-effect-based (bio-) chemical sensor, in which a desired sensing area on the sensor surface can be defined by illumination. Light addressability can be used to visualize the concentration and spatial distribution of the target molecules, e.g., H+ ions. This unique feature has great potential for the label-free imaging of the metabolic activity of living organisms. The cultivation of those organisms needs specially tailored surface properties of the sensor. O2 plasma treatment is an attractive and promising tool for rapid surface engineering. However, the potential impacts of the technique are carefully investigated for the sensors that suffer from plasma-induced damage. Herein, a LAPS with a Ta2O5 pH-sensitive surface is successfully patterned by plasma treatment, and its effects are investigated by contact angle and scanning LAPS measurements. The plasma duration of 30 s (30 W) is found to be the threshold value, where excessive wettability begins. Furthermore, this treatment approach causes moderate plasma-induced damage, which can be reduced by thermal annealing (10 min at 300 °C). These findings provide a useful guideline to support future studies, where the LAPS surface is desired to be more hydrophilic by O2 plasma treatment.}, language = {en} } @article{PourshahidiEngelmannOffenhaeusseretal.2022, author = {Pourshahidi, Ali Mohammad and Engelmann, Ulrich M. and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Resolving ambiguities in core size determination of magnetic nanoparticles from magnetic frequency mixing data}, series = {Journal of Magnetism and Magnetic Materials}, volume = {563}, journal = {Journal of Magnetism and Magnetic Materials}, number = {In progress, Art. No. 169969}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2022.169969}, year = {2022}, abstract = {Frequency mixing magnetic detection (FMMD) has been widely utilized as a measurement technique in magnetic immunoassays. It can also be used for the characterization and distinction (also known as "colourization") of different types of magnetic nanoparticles (MNPs) based on their core sizes. In a previous work, it was shown that the large particles contribute most of the FMMD signal. This leads to ambiguities in core size determination from fitting since the contribution of the small-sized particles is almost undetectable among the strong responses from the large ones. In this work, we report on how this ambiguity can be overcome by modelling the signal intensity using the Langevin model in thermodynamic equilibrium including a lognormal core size distribution fL(dc,d0,σ) fitted to experimentally measured FMMD data of immobilized MNPs. For each given median diameter d0, an ambiguous amount of best-fitting pairs of parameters distribution width σ and number of particles Np with R2 > 0.99 are extracted. By determining the samples' total iron mass, mFe, with inductively coupled plasma optical emission spectrometry (ICP-OES), we are then able to identify the one specific best-fitting pair (σ, Np) one uniquely. With this additional externally measured parameter, we resolved the ambiguity in core size distribution and determined the parameters (d0, σ, Np) directly from FMMD measurements, allowing precise MNPs sample characterization.}, language = {en} } @article{RabehiGarlanAchtsnichtetal.2018, author = {Rabehi, Amine and Garlan, Benjamin and Achtsnicht, Stefan and Krause, Hans-Joachim and Offenh{\"a}usser, Andreas and Ngo, Kieu and Neveu, Sophie and Graff-Dubois, Stephanie and Kokabi, Hamid}, title = {Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18061747}, pages = {14 Seiten}, year = {2018}, abstract = {A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding.}, language = {en} }