@article{BaumannThomasGleitz1992, author = {Baumann, Marcus and Thomas, D. and Gleitz, M.}, title = {Efficiency of carbon assimilation and photoacclimation in a small unicellular Chaetoceros species from the Weddel Sea (Antarctica): Influence of temperature and irridiance / Thomas, D. ; Baumann, M.E.M. ; Gleitz, M.}, series = {Journal of Experimental Marine Biology and Ecology. 157 (1992), H. 2}, journal = {Journal of Experimental Marine Biology and Ecology. 157 (1992), H. 2}, isbn = {0022-0981}, pages = {195 -- 209}, year = {1992}, language = {en} } @article{BaumannTillmannAletsee1989, author = {Baumann, Marcus and Tillmann, U. and Aletsee, L.}, title = {Distribution of Carbon Among Photosynthetic End Products in the Bloom-Forming Arctic Diatom Thalassiosira antarctica COMBER / Tillmann, U. ; Baumann, M.E.M. ; Aletsee, L.}, series = {Polar Biology. 10 (1989), H. 3}, journal = {Polar Biology. 10 (1989), H. 3}, isbn = {0722-4060}, pages = {231 -- 238}, year = {1989}, language = {en} } @inproceedings{BaumannTeixeiraBouraGoettscheetal.2010, author = {Baumann, T. and Teixeira Boura, Cristiano Jos{\´e} and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and O'Connell, B. and Schmitz, S. and Zunft, S.}, title = {Air/Sand heat exchanger design and materials for solar thermal power plant applications}, series = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, booktitle = {SolarPACES 2010 : the CSP Conference: electricity, fuels and clean water from concentrated solar energy ; 21 to 24 September 2010, Perpignan, France}, publisher = {Soc. OSC}, address = {Saint Maur}, pages = {146 -- 147}, year = {2010}, language = {en} } @inproceedings{BaumannTeixeiraBouraEcksteinetal.2012, author = {Baumann, Torsten and Teixeira Boura, Cristiano Jos{\´e} and Eckstein, Julian and Dabrowski, Jan and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Zunft, Stefan}, title = {Properties of bulk materials for high-temperature air-sand heat exchangers}, series = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 2}, booktitle = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 2}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Solar Energy Society}, isbn = {978-1-61839-364-7}, pages = {1270 -- 1278}, year = {2012}, language = {en} } @inproceedings{BaumannTeixeiraBouraGoettscheetal.2011, author = {Baumann, Torsten and Teixeira Boura, Cristiano Jos{\´e} and G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Zunft, Stefan}, title = {Air-sand heat exchanger: materials and flow properties}, series = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, booktitle = {SolarPACES 2011 : concentrating solar power and chemical energy systems : 20 - 23 September, 2011, Granada, Spain}, address = {Granada}, pages = {1 CD-ROM}, year = {2011}, language = {en} } @misc{BaumgartnerWunderlichJaunichetal.2012, author = {Baumgartner, Thomas and Wunderlich, Florian and Jaunich, Arthur and Sato, Tomoo and Bundy, Georg and Grießmann, Nadine and Kowalski, Julia and Burghardt, Stefan and Hanebrink, J{\"o}rg}, title = {Lighting the way: Perspectives on the global lighting market}, edition = {2nd ed.}, address = {McKinsey}, pages = {58}, year = {2012}, language = {en} } @article{BaumgartnerFidlerWethetal.2008, author = {Baumgartner, Werner and Fidler, Florian and Weth, Agnes and Habbecke, Martin and Jakob, Peter and Butenweg, Christoph and B{\"o}hme, Wolfgang}, title = {Investigating the locomotion of the sandfish in desert sand using NMR-Imaging}, series = {PLOS ONE}, volume = {3}, journal = {PLOS ONE}, number = {10}, publisher = {Plos}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0003309}, pages = {e3309}, year = {2008}, abstract = {The sandfish (Scincus scincus) is a lizard having the remarkable ability to move through desert sand for significant distances. It is well adapted to living in loose sand by virtue of a combination of morphological and behavioural specializations. We investigated the bodyform of the sandfish using 3D-laserscanning and explored its locomotion in loose desert sand using fast nuclear magnetic resonance (NMR) imaging. The sandfish exhibits an in-plane meandering motion with a frequency of about 3 Hz and an amplitude of about half its body length accompanied by swimming-like (or trotting) movements of its limbs. No torsion of the body was observed, a movement required for a digging-behaviour. Simple calculations based on the Janssen model for granular material related to our findings on bodyform and locomotor behaviour render a local decompaction of the sand surrounding the moving sandfish very likely. Thus the sand locally behaves as a viscous fluid and not as a solid material. In this fluidised sand the sandfish is able to "swim" using its limbs.}, language = {en} } @phdthesis{Bayer2021, author = {Bayer, Robin}, title = {Development of a novel in-vitro vascular model for determination of physiological and pathophysiological mechanobiology}, publisher = {Universit{\"a}t zu K{\"o}ln}, address = {K{\"o}ln}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:38-362212}, pages = {IV, 115 Seiten}, year = {2021}, language = {en} } @inproceedings{BayerHeschelerArtmannetal.2019, author = {Bayer, Robin and Hescheler, J{\"u}rgen and Artmann, Gerhard and Temiz Artmann, Ayseg{\"u}l}, title = {Treating arterial hypertension in a cell culture well}, series = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW}, booktitle = {3rd YRA MedTech Symposium 2019 : May 24 / 2019 / FH AachenW}, editor = {Staat, Manfred and Erni, Daniel}, publisher = {Universit{\"a}t Duisburg-Essen}, address = {Duisburg}, organization = {MedTech Symposium}, isbn = {978-3-940402-22-6}, doi = {10.17185/duepublico/48750}, pages = {5 -- 6}, year = {2019}, abstract = {Hypertension describes the pathological increase of blood pressure, which is most commonly associated with the increase of vascular wall stiffness [1]. Referring to the "Deutsche Bluthochdruck Liga" this pathology shows a growing trend in our aging society. In order to find novel pharmacological and probably personalized treatments, we want to present a functional approach to study biomechanical properties of a human aortic vascular model. In this method review we will give an overview of recent studies which were carried out with the CellDrum technology [2] and underline the added value to already existing standard procedures known from the field of physiology. Herein described CellDrum technology is a system to measure functional mechanical properties of cell monolayers and thin tissue constructs in-vitro. Additionally, the CellDrum enables to elucidate the mechanical response of cells to pharmacological drugs, toxins and vasoactive agents. Due to its highly flexible polymer support, cells can also be mechanically stimulated by steady and cyclic biaxial stretching.}, language = {en} } @article{BayerTemizArtmannDigeletal.2020, author = {Bayer, Robin and Temiz Artmann, Ayseg{\"u}l and Digel, Ilya and Falkenstein, Julia and Artmann, Gerhard and Creutz, Till and Hescheler, J{\"u}rgen}, title = {Mechano-pharmacological testing of L-Type Ca²⁺ channel modulators via human vascular celldrum model}, series = {Cellular Physiology and Biochemistry}, volume = {54}, journal = {Cellular Physiology and Biochemistry}, publisher = {Cell Physiol Biochem Press}, address = {D{\"u}sseldorf}, issn = {1421-9778}, doi = {10.33594/000000225}, pages = {371 -- 383}, year = {2020}, abstract = {Background/Aims: This study aimed to establish a precise and well-defined working model, assessing pharmaceutical effects on vascular smooth muscle cell monolayer in-vitro. It describes various analysis techniques to determine the most suitable to measure the biomechanical impact of vasoactive agents by using CellDrum technology. Methods: The so-called CellDrum technology was applied to analyse the biomechanical properties of confluent human aorta muscle cells (haSMC) in monolayer. The cell generated tensions deviations in the range of a few N/m² are evaluated by the CellDrum technology. This study focuses on the dilative and contractive effects of L-type Ca²⁺ channel agonists and antagonists, respectively. We analyzed the effects of Bay K8644, nifedipine and verapamil. Three different measurement modes were developed and applied to determine the most appropriate analysis technique for the study purpose. These three operation modes are called, particular time mode" (PTM), "long term mode" (LTM) and "real-time mode" (RTM). Results: It was possible to quantify the biomechanical response of haSMCs to the addition of vasoactive agents using CellDrum technology. Due to the supplementation of 100nM Bay K8644, the tension increased approximately 10.6\% from initial tension maximum, whereas, the treatment with nifedipine and verapamil caused a significant decrease in cellular tension: 10nM nifedipine decreased the biomechanical stress around 6,5\% and 50nM verapamil by 2,8\%, compared to the initial tension maximum. Additionally, all tested measurement modes provide similar results while focusing on different analysis parameters. Conclusion: The CellDrum technology allows highly sensitive biomechanical stress measurements of cultured haSMC monolayers. The mechanical stress responses evoked by the application of vasoactive calcium channel modulators were quantified functionally (N/m²). All tested operation modes resulted in equal findings, whereas each mode features operation-related data analysis.}, language = {en} }