@article{ZhantlessovaSavitskayaKistaubayevaetal.2022, author = {Zhantlessova, Sirina and Savitskaya, Irina and Kistaubayeva, Aida and Ignatova, Ludmila and Talipova, Aizhan and Pogrebnjak, Alexander and Digel, Ilya}, title = {Advanced "Green" prebiotic composite of bacterial cellulose/pullulan based on synthetic biology-powered microbial coculture strategy}, series = {Polymers}, volume = {14}, journal = {Polymers}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym14153224}, pages = {Artikel 3224}, year = {2022}, abstract = {Bacterial cellulose (BC) is a biopolymer produced by different microorganisms, but in biotechnological practice, Komagataeibacter xylinus is used. The micro- and nanofibrillar structure of BC, which forms many different-sized pores, creates prerequisites for the introduction of other polymers into it, including those synthesized by other microorganisms. The study aims to develop a cocultivation system of BC and prebiotic producers to obtain BC-based composite material with prebiotic activity. In this study, pullulan (PUL) was found to stimulate the growth of the probiotic strain Lactobacillus rhamnosus GG better than the other microbial polysaccharides gellan and xanthan. BC/PUL biocomposite with prebiotic properties was obtained by cocultivation of Komagataeibacter xylinus and Aureobasidium pullulans, BC and PUL producers respectively, on molasses medium. The inclusion of PUL in BC is proved gravimetrically by scanning electron microscopy and by Fourier transformed infrared spectroscopy. Cocultivation demonstrated a composite effect on the aggregation and binding of BC fibers, which led to a significant improvement in mechanical properties. The developed approach for "grafting" of prebiotic activity on BC allows preparation of environmentally friendly composites of better quality.}, language = {en} } @article{AkimbekovDigelTastambeketal.2022, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, Kuanysh T. and Marat, Adel K. and Turaliyeva, Moldir A. and Kaiyrmanova, Gulzhan K.}, title = {Biotechnology of Microorganisms from Coal Environments: From Environmental Remediation to Energy Production}, series = {Biology}, volume = {11}, journal = {Biology}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2079-7737}, doi = {10.3390/biology11091306}, pages = {47 Seiten}, year = {2022}, abstract = {It was generally believed that coal sources are not favorable as live-in habitats for microorganisms due to their recalcitrant chemical nature and negligible decomposition. However, accumulating evidence has revealed the presence of diverse microbial groups in coal environments and their significant metabolic role in coal biogeochemical dynamics and ecosystem functioning. The high oxygen content, organic fractions, and lignin-like structures of lower-rank coals may provide effective means for microbial attack, still representing a greatly unexplored frontier in microbiology. Coal degradation/conversion technology by native bacterial and fungal species has great potential in agricultural development, chemical industry production, and environmental rehabilitation. Furthermore, native microalgal species can offer a sustainable energy source and an excellent bioremediation strategy applicable to coal spill/seam waters. Additionally, the measures of the fate of the microbial community would serve as an indicator of restoration progress on post-coal-mining sites. This review puts forward a comprehensive vision of coal biodegradation and bioprocessing by microorganisms native to coal environments for determining their biotechnological potential and possible applications.}, language = {en} } @article{ThiebesKleinZingsheimetal.2022, author = {Thiebes, Anja Lena and Klein, Sarah and Zingsheim, Jonas and M{\"o}ller, Georg H. and G{\"u}rzing, Stefanie and Reddemann, Manuel A. and Behbahani, Mehdi and Cornelissen, Christian G.}, title = {Effervescent atomizer as novel cell spray technology to decrease the gas-to-liquid ratio}, series = {pharmaceutics}, volume = {14}, journal = {pharmaceutics}, number = {11}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/pharmaceutics14112421}, pages = {Artikel 2421}, year = {2022}, abstract = {Cell spraying has become a feasible application method for cell therapy and tissue engineering approaches. Different devices have been used with varying success. Often, twin-fluid atomizers are used, which require a high gas velocity for optimal aerosolization characteristics. To decrease the amount and velocity of required air, a custom-made atomizer was designed based on the effervescent principle. Different designs were evaluated regarding spray characteristics and their influence on human adipose-derived mesenchymal stromal cells. The arithmetic mean diameters of the droplets were 15.4-33.5 µm with decreasing diameters for increasing gas-to-liquid ratios. The survival rate was >90\% of the control for the lowest gas-to-liquid ratio. For higher ratios, cell survival decreased to approximately 50\%. Further experiments were performed with the design, which had shown the highest survival rates. After seven days, no significant differences in metabolic activity were observed. The apoptosis rates were not influenced by aerosolization, while high gas-to-liquid ratios caused increased necrosis levels. Tri-lineage differentiation potential into adipocytes, chondrocytes, and osteoblasts was not negatively influenced by aerosolization. Thus, the effervescent aerosolization principle was proven suitable for cell applications requiring reduced amounts of supplied air. This is the first time an effervescent atomizer was used for cell processing.}, language = {en} } @article{UysalFiratCreutzetal.2022, author = {Uysal, Karya and Firat, Ipek Serat and Creutz, Till and Aydin, Inci Cansu and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes}, series = {membranes}, volume = {2023}, journal = {membranes}, number = {13(1)}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/membranes13010022}, pages = {Artikel 22}, year = {2022}, abstract = {Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5\% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here.}, language = {en} } @article{StaeudleSeynnesLapsetal.2022, author = {St{\"a}udle, Benjamin and Seynnes, Olivier and Laps, Guido and Br{\"u}ggemann, Gert-Peter and Albracht, Kirsten}, title = {Altered gastrocnemius contractile behavior in former achilles tendon rupture patients during walking}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2022.792576}, pages = {12 Seiten}, year = {2022}, abstract = {Achilles tendon rupture (ATR) remains associated with functional limitations years after injury. Architectural remodeling of the gastrocnemius medialis (GM) muscle is typically observed in the affected leg and may compensate force deficits caused by a longer tendon. Yet patients seem to retain functional limitations during—low-force—walking gait. To explore the potential limits imposed by the remodeled GM muscle-tendon unit (MTU) on walking gait, we examined the contractile behavior of muscle fascicles during the stance phase. In a cross-sectional design, we studied nine former patients (males; age: 45 ± 9 years; height: 180 ± 7 cm; weight: 83 ± 6 kg) with a history of complete unilateral ATR, approximately 4 years post-surgery. Using ultrasonography, GM tendon morphology, muscle architecture at rest, and fascicular behavior were assessed during walking at 1.5 m⋅s-1 on a treadmill. Walking patterns were recorded with a motion capture system. The unaffected leg served as control. Lower limbs kinematics were largely similar between legs during walking. Typical features of ATR-related MTU remodeling were observed during the stance sub-phases corresponding to series elastic element (SEE) lengthening (energy storage) and SEE shortening (energy release), with shorter GM fascicles (36 and 36\%, respectively) and greater pennation angles (8° and 12°, respectively). However, relative to the optimal fascicle length for force production, fascicles operated at comparable length in both legs. Similarly, when expressed relative to optimal fascicle length, fascicle contraction velocity was not different between sides, except at the time-point of peak series elastic element (SEE) length, where it was 39 ± 49\% lower in the affected leg. Concomitantly, fascicles rotation during contraction was greater in the affected leg during the whole stance-phase, and architectural gear ratios (AGR) was larger during SEE lengthening. Under the present testing conditions, former ATR patients had recovered a relatively symmetrical walking gait pattern. Differences in seen AGR seem to accommodate the profound changes in MTU architecture, limiting the required fascicle shortening velocity. Overall, the contractile behavior of the GM fascicles does not restrict length- or velocity-dependent force potentials during this locomotor task.}, language = {en} } @article{KezerashviliDachwald2021, author = {Kezerashvili, Roman Ya and Dachwald, Bernd}, title = {Preface: Solar sailing: Concepts, technology, and missions II}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.01.037}, pages = {2559 -- 2560}, year = {2021}, language = {en} } @article{SpietzSproewitzSeefeldtetal.2021, author = {Spietz, Peter and Spr{\"o}witz, Tom and Seefeldt, Patric and Grundmann, Jan Thimo and Jahnke, Rico and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Reershemius, Siebo and Renger, Thomas and Ruffer, Michael and Sasaki, Kaname and Sznajder, Maciej and T{\´o}th, Norbert and Ceriotti, Matteo and Dachwald, Bernd and Macdonald, Malcolm and McInnes, Colin and Seboldt, Wolfgang and Quantius, Dominik and Bauer, Waldemar and Wiedemann, Carsten and Grimm, Christian D. and Hercik, David and Ho, Tra-Mi and Lange, Caroline and Schmitz, Nicole}, title = {Paths not taken - The Gossamer roadmap's other options}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.01.044}, pages = {2912 -- 2956}, year = {2021}, language = {en} } @article{AkimbekovDigelAbdievaetal.2021, author = {Akimbekov, Nuraly S. and Digel, Ilya and Abdieva, Gulzhamal and Ualieva, Perizat and Tastambek, Kuanysh}, title = {Lignite biosolubilization and bioconversion by Bacillus sp.: the collation of analytical data}, series = {Biofuels}, volume = {12}, journal = {Biofuels}, number = {3}, publisher = {Taylor \& Francis}, address = {London}, issn = {1759-7277}, pages = {247 -- 258}, year = {2021}, abstract = {The vast metabolic potential of microbes in brown coal (lignite) processing and utilization can greatly contribute to innovative approaches to sustainable production of high-value products from coal. In this study, the multi-faceted and complex coal biosolubilization process by Bacillus sp. RKB 7 isolate from the Kazakhstan coal-mining soil is reported, and the derived products are characterized. Lignite solubilization tests performed for surface and suspension cultures testify to the formation of numerous soluble lignite-derived substances. Almost 24\% of crude lignite (5\% w/v) was solubilized within 14 days under slightly alkaline conditions (pH 8.2). FTIR analysis revealed various functional groups in the obtained biosolubilization products. Analyses of the lignite-derived humic products by UV-Vis and fluorescence spectrometry as well as elemental analysis yielded compatible results indicating the emerging products had a lower molecular weight and degree of aromaticity. Furthermore, XRD and SEM analyses were used to evaluate the biosolubilization processes from mineralogical and microscopic points of view. The findings not only contribute to a deeper understanding of microbe-mineral interactions in coal environments, but also contribute to knowledge of coal biosolubilization and bioconversion with regard to sustainable production of humic substances. The detailed and comprehensive analyses demonstrate the huge biotechnological potential of Bacillus sp. for agricultural productivity and environmental health.}, language = {en} } @article{HeiligersSchoutetensDachwald2021, author = {Heiligers, Jeannette and Schoutetens, Frederic and Dachwald, Bernd}, title = {Photon-sail equilibria in the alpha centauri system}, series = {Journal of Guidance, Control, and Dynamics}, volume = {44}, journal = {Journal of Guidance, Control, and Dynamics}, number = {5}, issn = {1533-3884}, doi = {10.2514/1.G005446}, pages = {1053 -- 1061}, year = {2021}, language = {en} } @article{HunkerGossmannRamanetal.2021, author = {Hunker, Jan L. and Gossmann, Matthias and Raman, Aravind Hariharan and Linder, Peter}, title = {Artificial neural networks in cardiac safety assessment: Classification of chemotherapeutic compound effects on hiPSC-derived cardiomyocyte contractility}, series = {Journal of Pharmacological and Toxicological Methods}, volume = {111}, journal = {Journal of Pharmacological and Toxicological Methods}, number = {Article number 107044}, publisher = {Elsevier}, address = {New York}, issn = {1056-8719}, doi = {10.1016/j.vascn.2021.107044}, year = {2021}, language = {en} }