@article{DachwaldMikuckiTulaczyketal.2014, author = {Dachwald, Bernd and Mikucki, Jill and Tulaczyk, Slawek and Digel, Ilya and Espe, Clemens and Feldmann, Marco and Francke, Gero and Kowalski, Julia and Xu, Changsheng}, title = {IceMole : A maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems}, series = {Annals of Glaciology}, volume = {55}, journal = {Annals of Glaciology}, number = {65}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {1727-5644}, doi = {10.3189/2014AoG65A004}, pages = {14 -- 22}, year = {2014}, abstract = {There is significant interest in sampling subglacial environments for geobiological studies, but they are difficult to access. Existing ice-drilling technologies make it cumbersome to maintain microbiologically clean access for sample acquisition and environmental stewardship of potentially fragile subglacial aquatic ecosystems. The IceMole is a maneuverable subsurface ice probe for clean in situ analysis and sampling of glacial ice and subglacial materials. The design is based on the novel concept of combining melting and mechanical propulsion. It can change melting direction by differential heating of the melting head and optional side-wall heaters. The first two prototypes were successfully tested between 2010 and 2012 on glaciers in Switzerland and Iceland. They demonstrated downward, horizontal and upward melting, as well as curve driving and dirt layer penetration. A more advanced probe is currently under development as part of the Enceladus Explorer (EnEx) project. It offers systems for obstacle avoidance, target detection, and navigation in ice. For the EnEx-IceMole, we will pay particular attention to clean protocols for the sampling of subglacial materials for biogeochemical analysis. We plan to use this probe for clean access into a unique subglacial aquatic environment at Blood Falls, Antarctica, with return of a subglacial brine sample.}, language = {en} } @article{DachwaldMcDonaldMcInnesetal.2007, author = {Dachwald, Bernd and McDonald, Malcolm and McInnes, Colin R. and Mengali, Giovanni}, title = {Impact of Optical Degradation on Solar Sail Mission Performance}, series = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, journal = {Journal of Spacecraft and Rockets. 44 (2007), H. 4}, isbn = {0022-4650}, pages = {740 -- 749}, year = {2007}, language = {en} } @article{FerreinCalmesLakemeyeretal.2006, author = {Ferrein, Alexander and Calmes, Laurent and Lakemeyer, Gerhard and Wagner, Hermann}, title = {Von Schleiereulen und fussballspielenden Robotern / Calmes, Laurent ; Ferrein, Alexander ; Lakemeyer, Gerhard ; Wagner, Hermann}, series = {RWTH Themen (2006)}, journal = {RWTH Themen (2006)}, isbn = {0179-079X}, pages = {30 -- 33}, year = {2006}, language = {de} } @article{FerreinStrackLakemeyer2006, author = {Ferrein, Alexander and Strack, Andreas and Lakemeyer, Gerhard}, title = {Laser-Based Localization with Sparse Landmarks / Strack, Andreas ; Ferrein, Alexander ; Lakemeyer, Gerhard}, series = {RoboCup 2005: Robot Soccer World Cup IX}, journal = {RoboCup 2005: Robot Soccer World Cup IX}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-35437-6}, pages = {569 -- 576}, year = {2006}, language = {en} } @article{VorstFerreinLakemeyer2006, author = {Vorst, Phillip and Ferrein, Alexander and Lakemeyer, Gerhard}, title = {AllemaniACs3D team description}, pages = {1 -- 6}, year = {2006}, language = {en} } @article{FerreinSchifferLakemeyer2006, author = {Ferrein, Alexander and Schiffer, Stefan and Lakemeyer, Gerhard}, title = {Qualitative World Models for Soccer Robots / Schiffer, Stefan ; Ferrein, Alexander ; Lakemeyer, Gerhard}, series = {Qualitative constraint calculi : application and integration ; KI 2006, 14 - 19 June 2006, Bremen, Germany ; 29th Annual German Conference on Artificial Intelligence ; workshop / Stefan W{\"o}lfl ... (eds.)}, journal = {Qualitative constraint calculi : application and integration ; KI 2006, 14 - 19 June 2006, Bremen, Germany ; 29th Annual German Conference on Artificial Intelligence ; workshop / Stefan W{\"o}lfl ... (eds.)}, publisher = {Univ.}, address = {Bremen}, isbn = {3-88722-666-6}, pages = {3 -- 14}, year = {2006}, language = {en} } @article{BungValero2018, author = {Bung, Daniel Bernhard and Valero, Daniel}, title = {Re-aeration on stepped spillways with special consideration of entrained and entrapped air}, series = {Geosciences}, volume = {8}, journal = {Geosciences}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2076-3263}, pages = {Article number 333}, year = {2018}, abstract = {As with most high-velocity free-surface flows, stepped spillway flows become self-aerated when the drop height exceeds a critical value. Due to the step-induced macro-roughness, the flow field becomes more turbulent than on a similar smooth-invert chute. For this reason, cascades are oftentimes used as re-aeration structures in wastewater treatment. However, for stepped spillways as flood release structures downstream of deoxygenated reservoirs, gas transfer is also of crucial significance to meet ecological requirements. Prediction of mass transfer velocities becomes challenging, as the flow regime differs from typical previously studied flow conditions. In this paper, detailed air-water flow measurements are conducted on stepped spillway models with different geometry, with the aim to estimate the specific air-water interface. Re-aeration performances are determined by applying the absorption method. In contrast to earlier studies, the aerated water body is considered a continuous mixture up to a level where 75\% air concentration is reached. Above this level, a homogenous surface wave field is considered, which is found to significantly affect the total air-water interface available for mass transfer. Geometrical characteristics of these surface waves are obtained from high-speed camera investigations. The results show that both the mean air concentration and the mean flow velocity have influence on the mass transfer. Finally, an empirical relationship for the mass transfer on stepped spillway models is proposed.}, language = {en} } @article{Golland2021, author = {Golland, Alexander}, title = {Bußgelder wegen Datenschutzverst{\"o}ßen - Vermeidung und Verteidigung. Deutsche Aufsichtsbeh{\"o}rden setzen seit vergangenem Jahr zunehmend auf Sanktion}, series = {NWB Steuer- und Wirtschaftsrecht}, volume = {36}, journal = {NWB Steuer- und Wirtschaftsrecht}, publisher = {NWB-Verlag}, address = {Herne}, isbn = {0028-3460}, pages = {2678 -- 2687}, year = {2021}, language = {de} } @article{NguyenDuongTranetal.2012, author = {Nguyen, Nhu Huynh and Duong, Minh Tuan and Tran, Thanh Ngoc and Pham, Phu Tinh and Grottke, O. and Tolba, R. and Staat, Manfred}, title = {Influence of a freeze-thaw cycle on the stress-stretch curves of tissues of porcine abdominal organs}, series = {Journal of Biomechanics}, volume = {45}, journal = {Journal of Biomechanics}, number = {14}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-2380}, doi = {10.1016/j.jbiomech.2012.07.008}, pages = {2382 -- 2386}, year = {2012}, abstract = {The paper investigates both fresh porcine spleen and liver and the possible decomposition of these organs under a freeze-thaw cycle. The effect of tissue preservation condition is an important factor which should be taken into account for protracted biomechanical tests. In this work, tension tests were conducted for a large number of tissue specimens from twenty pigs divided into two groups of 10. Concretely, the first group was tested in fresh state; the other one was tested after a freeze-thaw cycle which simulates the conservation conditions before biomechanical experiments. A modified Fung model for isotropic behavior was adopted for the curve fitting of each kind of tissues. Experimental results show strong effects of the realistic freeze-thaw cycle on the capsule of elastin-rich spleen but negligible effects on the liver which virtually contains no elastin. This different behavior could be explained by the autolysis of elastin by elastolytic enzymes during the warmer period after thawing. Realistic biomechanical properties of elastin-rich organs can only be expected if really fresh tissue is tested. The observations are supported by tests of intestines.}, language = {en} } @article{StaatTrenzLohmannetal.2012, author = {Staat, Manfred and Trenz, Eva and Lohmann, Philipp and Frotscher, Ralf and Klinge, Uwe and Tabaza, Ruth and Kirschner-Hermanns, Ruth}, title = {New measurements to compare soft tissue anchoring systems in pelvic floor surgery}, series = {Journal of Biomedical Materials Research Part B: Applied Biomaterials}, volume = {100B}, journal = {Journal of Biomedical Materials Research Part B: Applied Biomaterials}, number = {4}, publisher = {Wiley}, address = {Hoboken, NJ}, issn = {1552-4981}, doi = {10.1002/jbm.b.32654}, pages = {924 -- 933}, year = {2012}, abstract = {Suburethral slings as well as different meshes are widely used treating stress urinary incontinence and prolaps in women. With the development of MiniSlings and special meshes using less alloplastic material anchorage systems become more important to keep devices in place and to put some tension especially on the MiniSlings. To date, there are many different systems of MiniSlings of different companies on the market which differ in the structure of the used meshes and anchors. A new objective measurement method to compare different properties of MiniSling systems (mesh and anchor) is presented in this article. Ballistic gelatine acts as soft tissue surrogate. Significant differences in parameters like pull-out strength of anchors or shrinkage of meshes under loading conditions have been determined. The form and size of the anchors as well as the structural stability of the meshes are decisive for a proper integration. The tested anchorings sytems showed markedly different mechanical function at their respective load bearing capacity. As the stable fixation of the device in tissue is a prerequisite for a permanet reinforcement, the proposed test system permits further optimisation of anchor and mesh devices to improve the success of the surgical treatment}, language = {en} }