@inproceedings{SiegertIdingBaumannetal.2000, author = {Siegert, Petra and Iding, Hans and Baumann, Martin and McLeish, Michael J. and Kenyon, George L. and Pohl, Martina}, title = {Broadening of the substrate spectra of two ThDP-dependent decarboxylases using site-directed-mutagenesis}, series = {Proceedings of the 4th International Congress on Biochemical Engineering : 17 and 18 February 2000, Stuttgart}, booktitle = {Proceedings of the 4th International Congress on Biochemical Engineering : 17 and 18 February 2000, Stuttgart}, organization = {International Congress on Biochemical Engineering <4, 2000, Stuttgart>}, isbn = {3-8167-5570-4}, pages = {38 -- 42}, year = {2000}, language = {en} } @article{SiegertMcLeishBaumannetal.2005, author = {Siegert, Petra and McLeish, Michael J. and Baumann, Martin and Iding, Hans and Kneen, Malea M. and Kenyon, George L. and Pohl, Martina}, title = {Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida}, series = {Protein engineering, design, and selection : peds}, volume = {Vol. 18}, journal = {Protein engineering, design, and selection : peds}, number = {Iss. 7}, issn = {1460-213X (E-Journal); 1741-0134 (E-Journal); 0269-2139 (Print); 1741-0126 (Print)}, pages = {345 -- 357}, year = {2005}, language = {en} } @incollection{SiegertPohlKneenetal.2004, author = {Siegert, Petra and Pohl, Martina and Kneen, Malea M. and Pogozheva, Irina D. and Kenyon, George L. and McLeish, Michael J.}, title = {Exploring the substrate specificity of benzoylformate decarboxylase, pyruvate decarboxylase, and benzaldehyde lyase}, series = {Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ...}, booktitle = {Thiamine : catalytic mechanisms in normal and disease states / ed. by Frank Jordan ...}, publisher = {Dekker}, address = {New York, NY}, isbn = {0-8247-4062-9}, pages = {275 -- 290}, year = {2004}, language = {en} } @article{SiekerNeunerDimitrovaetal.2011, author = {Sieker, Tim and Neuner, Andreas and Dimitrova, Darina and Tippk{\"o}tter, Nils and Muffler, Kai and Bart, Hans-J{\"o}rg and Heinzle, Elmar and Ulber, Roland}, title = {Ethanol production from grass silage by simultaneous pretreatment, saccharification and fermentation: First steps in the process development}, series = {Engineering in Life Sciences}, volume = {11}, journal = {Engineering in Life Sciences}, number = {4}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/elsc.201000160}, pages = {436 -- 442}, year = {2011}, abstract = {Grass silage provides a great potential as renewable feedstock. Two fractions of the grass silage, a press juice and the fiber fraction, were evaluated for their possible use for bioethanol production. Direct production of ethanol from press juice is not possible due to high concentrations of organic acids. For the fiber fraction, alkaline peroxide or enzymatic pretreatment was used, which removes the phenolic acids in the cell wall. In this study, we demonstrate the possibility to integrate the enzymatic pretreatment with a simultaneous saccharification and fermentation to achieve ethanol production from grass silage in a one-process step. Achieved yields were about 53 g ethanol per kg silage with the alkaline peroxide pretreatment and 91 g/kg with the enzymatic pretreatment at concentrations of 8.5 and 14.6 g/L, respectively. Furthermore, it was shown that additional supplementation of the fermentation medium with vitamins, trace elements and nutrient salts is not necessary when the press juice is directly used in the fermentation step.}, language = {en} } @inproceedings{SiekmannMueller2011, author = {Siekmann, Thomas and M{\"u}ller, Karsten}, title = {Adaptive potential of the stormwater management in urban areas faced by the climate change}, series = {12th International Conference on Urban Drainage, Porto Alegre/Brazil, 11-16 September 2011}, booktitle = {12th International Conference on Urban Drainage, Porto Alegre/Brazil, 11-16 September 2011}, pages = {9 S.}, year = {2011}, language = {en} } @book{Siepmann1997, author = {Siepmann, Thomas}, title = {Modeller for Value Systems}, publisher = {Erasmus Universiteit Rotterdam}, address = {Rotterdam}, year = {1997}, language = {en} } @article{Siepmann1999, author = {Siepmann, Thomas}, title = {Exploitation Plan of the TELEflow Project}, address = {Brussels}, year = {1999}, language = {en} } @article{SiepmannRupietta1993, author = {Siepmann, Thomas and Rupietta, D.}, title = {Closer to the customer with computerized product support}, series = {Technische Mitteilungen Krupp (1993)}, journal = {Technische Mitteilungen Krupp (1993)}, address = {Essen}, year = {1993}, language = {en} } @article{SiepmannSchuhLevering1998, author = {Siepmann, Thomas and Schuh, G. and Levering, V.}, title = {PROPLAN / Schuh, G.; Siepmann, Th.; Levering, V.}, series = {Handbook on architectures of information systems : with 24 tables / Peter Bernus ... (ed.)}, journal = {Handbook on architectures of information systems : with 24 tables / Peter Bernus ... (ed.)}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {3-540-64453-9}, pages = {IX, 834 S. : graph. Darst.}, year = {1998}, language = {en} } @inproceedings{SildatkeKarwanniKraftetal.2020, author = {Sildatke, Michael and Karwanni, Hendrik and Kraft, Bodo and Schmidts, Oliver and Z{\"u}ndorf, Albert}, title = {Automated Software Quality Monitoring in Research Collaboration Projects}, series = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, booktitle = {ICSEW'20: Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops}, publisher = {IEEE}, address = {New York, NY}, doi = {10.1145/3387940.3391478}, pages = {603 -- 610}, year = {2020}, abstract = {In collaborative research projects, both researchers and practitioners work together solving business-critical challenges. These projects often deal with ETL processes, in which humans extract information from non-machine-readable documents by hand. AI-based machine learning models can help to solve this problem. Since machine learning approaches are not deterministic, their quality of output may decrease over time. This fact leads to an overall quality loss of the application which embeds machine learning models. Hence, the software qualities in development and production may differ. Machine learning models are black boxes. That makes practitioners skeptical and increases the inhibition threshold for early productive use of research prototypes. Continuous monitoring of software quality in production offers an early response capability on quality loss and encourages the use of machine learning approaches. Furthermore, experts have to ensure that they integrate possible new inputs into the model training as quickly as possible. In this paper, we introduce an architecture pattern with a reference implementation that extends the concept of Metrics Driven Research Collaboration with an automated software quality monitoring in productive use and a possibility to auto-generate new test data coming from processed documents in production. Through automated monitoring of the software quality and auto-generated test data, this approach ensures that the software quality meets and keeps requested thresholds in productive use, even during further continuous deployment and changing input data.}, language = {en} }