@inproceedings{TippkoetterStueckmannWinkelmannetal.2007, author = {Tippk{\"o}tter, Nils and St{\"u}ckmann, H. and Winkelmann, G. and Noack, U. and Beutel, S. and Scheper, T. and Ulber, Roland}, title = {Optimisation of antibody-labelling of gold colloids for their application in an immunchromatographic assay for microcystin-LR}, series = {European BioPerspectives : celebrating the 25th DECHEMA annual convention of biotechnologists ; 30 May - 1 June 2007, Cologne, Germany ; book of abstracts ; abstracts, poster programme}, booktitle = {European BioPerspectives : celebrating the 25th DECHEMA annual convention of biotechnologists ; 30 May - 1 June 2007, Cologne, Germany ; book of abstracts ; abstracts, poster programme}, publisher = {Dechema}, address = {Frankfurt am Main}, pages = {126}, year = {2007}, language = {en} } @inproceedings{NiemuellerLakemeyerFerrein2013, author = {Niem{\"u}ller, Tim and Lakemeyer, Gerhard and Ferrein, Alexander}, title = {Aspects of integrating diverse software into robotic systems extended abstract}, series = {ICRA 2013 - 8th Workshop on Software Development and Integration in Robotics (SDIR), Karlsruhe, Germany}, booktitle = {ICRA 2013 - 8th Workshop on Software Development and Integration in Robotics (SDIR), Karlsruhe, Germany}, pages = {1 -- 2}, year = {2013}, language = {en} } @article{FerreinKonurLakemeyer2004, author = {Ferrein, Alexander and Konur, Savas and Lakemeyer, Gerhard}, title = {Learning Decision Trees for Action Selection in Soccer Agents / Konur, Savas ; Ferrein, Alexander ; Lakemeyer, Gerhard}, pages = {1 -- 7}, year = {2004}, language = {en} } @article{EngelmannPourshahidiShalabyetal.2022, author = {Engelmann, Ulrich M. and Pourshahidi, Mohammad Ali and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Probing particle size dependency of frequency mixing magnetic detection with dynamic relaxation simulation}, series = {Journal of Magnetism and Magnetic Materials}, volume = {563}, journal = {Journal of Magnetism and Magnetic Materials}, number = {In progress, Art. No. 169965}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2022.169965}, year = {2022}, abstract = {Biomedical applications of magnetic nanoparticles (MNP) fundamentally rely on the particles' magnetic relaxation as a response to an alternating magnetic field. The magnetic relaxation complexly depends on the interplay of MNP magnetic and physical properties with the applied field parameters. It is commonly accepted that particle core size is a major contributor to signal generation in all the above applications, however, most MNP samples comprise broad distribution spanning nm and more. Therefore, precise knowledge of the exact contribution of individual core sizes to signal generation is desired for optimal MNP design generally for each application. Specifically, we present a magnetic relaxation simulation-driven analysis of experimental frequency mixing magnetic detection (FMMD) for biosensing to quantify the contributions of individual core size fractions towards signal generation. Applying our method to two different experimental MNP systems, we found the most dominant contributions from approx. 20 nm sized particles in the two independent MNP systems. Additional comparison between freely suspended and immobilized MNP also reveals insight in the MNP microstructure, allowing to use FMMD for MNP characterization, as well as to further fine-tune its applicability in biosensing.}, language = {en} } @inproceedings{PoghossianBronderWuetal.2015, author = {Poghossian, Arshak and Bronder, Thomas and Wu, Chunsheng and Sch{\"o}ning, Michael Josef}, title = {Label-free sensing of biomolecules by their intrinsic molecular charge using field-effect devices}, series = {Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13}, booktitle = {Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13}, isbn = {978-5-8084-1991-9}, pages = {61 -- 63}, year = {2015}, language = {en} } @article{Ferrein2005, author = {Ferrein, Alexander}, title = {Specifying Soccer Moves with Golog}, series = {Book of abstracts : Cologne, 15 - 17 September 2004 / 1st International Working Conference IT and Sport \& 5th conference DVS-Section Computer Science in Sport}, journal = {Book of abstracts : Cologne, 15 - 17 September 2004 / 1st International Working Conference IT and Sport \& 5th conference DVS-Section Computer Science in Sport}, publisher = {German Sport Univ.}, address = {K{\"o}ln}, isbn = {3-00-014576-1}, pages = {161 -- 165}, year = {2005}, language = {en} } @article{SchoppDollGraeseretal.2016, author = {Schopp, Christoph and Doll, Timo and Gr{\"a}ser, Ulrich and Harzheim, Thomas and Heuermann, Holger and Kling, Rainer and Marso, Michael}, title = {Capacitively Coupled High-Pressure Lamp Using Coaxial Line Networks}, series = {IEEE Transactions on Microwave Theory and Techniques}, volume = {64}, journal = {IEEE Transactions on Microwave Theory and Techniques}, number = {10}, publisher = {IEEE}, address = {New York, NY}, issn = {0018-9480}, doi = {10.1109/TMTT.2016.2600326}, pages = {3363 -- 3368}, year = {2016}, abstract = {This paper describes the development of a capacitively coupled high-pressure lamp with input power between 20 and 43 W at 2.45 GHz, using a coaxial line network. Compared with other electrodeless lamp systems, no cavity has to be used and a reduction in the input power is achieved. Therefore, this lamp is an alternative to the halogen incandescent lamp for domestic lighting. To serve the demands of domestic lighting, the filling of the lamp is optimized over all other resulting requirements, such as high efficacy at low induced powers and fast startups. A workflow to develop RF-driven plasma applications is presented, which makes use of the hot S-parameter technique. Descriptions of the fitting process inside a circuit and FEM simulator are given. Results of the combined ignition and operation network from simulations and measurements are compared. An initial prototype is built and measurements of the lamp's lighting properties are presented along with an investigation of the efficacy optimizations using large signal amplitude modulation. With this lamp, an efficacy of 135 lmW -1 is achieved.}, language = {en} } @inproceedings{HeuermannHarzheimMuehmel2021, author = {Heuermann, Holger and Harzheim, Thomas and M{\"u}hmel, Marc}, title = {A maritime harmonic radar search and rescue system using passive and active tags}, series = {2020 17th European Radar Conference (EuRAD)}, booktitle = {2020 17th European Radar Conference (EuRAD)}, publisher = {IEEE}, address = {New York, NY}, isbn = {978-2-87487-061-3}, doi = {10.1109/EuRAD48048.2021.00030}, pages = {73 -- 76}, year = {2021}, abstract = {This article introduces a new maritime search and rescue system based on S-band illumination harmonic radar (HR). Passive and active tags have been developed and tested attached to life jackets and a rescue boat. This system was able to detect and range the active tags up to a range of 5800 m in tests on the Baltic Sea with an antenna input power of only 100 W. All electronic GHz components of the system, excluding the S-band power amplifier, were custom developed for this purpose. Special attention is given to the performance and conceptual differences between passive and active tags used in the system and integration with a maritime X-band navigation radar is demonstrated.}, language = {en} } @article{GasparyanPoghossianVitusevichetal.2011, author = {Gasparyan, Ferdinand V. and Poghossian, Arshak and Vitusevich, Svetlana A. and Petrychuk, Mykhaylo V. and Sydoruk, Viktor A. and Siqueira, Jos{\´e} R. Jr. and Oliveira, Osvaldo N. Jr. and Offenh{\"a}usser, Andreas and Sch{\"o}ning, Michael Josef}, title = {Low-Frequency Noise in Field-Effect Devices Functionalized With Dendrimer/Carbon-Nanotube Multilayers}, series = {IEEE Sensors Journal. 11 (2011), H. 1}, journal = {IEEE Sensors Journal. 11 (2011), H. 1}, publisher = {IEEE}, address = {New York}, isbn = {1530-437X}, pages = {142 -- 149}, year = {2011}, language = {en} } @misc{MoehringWulfhorstCapitainetal.2016, author = {M{\"o}hring, S. and Wulfhorst, H. and Capitain, C. and Roth, J. and Tippk{\"o}tter, Nils}, title = {Fractioning of lignocellulosic biomass: Scale-down and automation of thermal pretreatment for parameter optimization}, series = {Chemie Ingenieur Technik}, volume = {88}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.201650288}, pages = {1229}, year = {2016}, abstract = {In order to efficiently convert lignocellulose, it is often necessary to conduct a pretreatment. The biomass considered in this study typically comprises of agricultural and horticultural residues, as well as beechwood. A very environmentally friendly method, namely, fungal pretreatment using white-rot fungi, leads to an enhanced enzymatic hydrolysis. In contrast to other processes presented, the energy input is extremely low. However, the fungal growth on the lignocellulosic substrates takes several weeks at least in order to be effective. Thus, the reduction of chemicals and energy for thermal processing is a target of our current research. Liquid hot water (LHW) and solvent-based pretreatment (OrganoSolv) require more complex equipment, as they depend on high temperatures (160 - 180 °C) and enhanced pressure (up to 20 bar). However, they prove to be promising processes in regard to the fractioning of lignocellulose. For optimal lignin recovery the parameters differ from those established in cellulose extraction. A novel screening system scaled down to a reaction volume of 100 mL has been developed and successfully tested for this purpose.}, language = {en} }