@article{BegingPoghossianSchoeningetal.2008, author = {Beging, Stefan and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Hataihimakul, Sudkanung and Busch, H. and Baldsiefen, G. and Laube, N. and Kleinen, L. and Hosseiny, R.}, title = {Feldeffektbasierender Ca2+-sensitiver Sensor f{\"u}r den Einsatz im Nativurin zur Bestimmung des Harnsteinbildungsrisikos}, series = {Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. M{\"a}rz 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, journal = {Sensoren und Messsysteme 2008 : 14. Fachtagung Ludwigsburg, 11. und 12. M{\"a}rz 2008 / VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, publisher = {VDI-Verl.}, address = {D{\"u}sseldorf}, isbn = {978-3-18-092011-5}, pages = {775 -- 782}, year = {2008}, language = {de} } @article{MourzinaMaiPoghossianetal.2003, author = {Mourzina, Y. and Mai, T. and Poghossian, Arshak and Ermolenko, Y. and Yoshinobu, T. and Vlasov, Y. and Iwasaki, H. and Sch{\"o}ning, Michael Josef}, title = {K+-selective field-effect sensors as transducers for bioelectronic applications}, series = {Electrochimica Acta. 48 (2003), H. 20-22}, journal = {Electrochimica Acta. 48 (2003), H. 20-22}, isbn = {0013-4686}, pages = {3333 -- 3339}, year = {2003}, language = {en} } @article{PoghossianPlatenSchoening2005, author = {Poghossian, Arshak and Platen, J. and Sch{\"o}ning, Michael Josef}, title = {Towards self-aligned nanostructures by means of layerexpansion technique}, series = {Electrochimica Acta. 51 (2005), H. 5}, journal = {Electrochimica Acta. 51 (2005), H. 5}, isbn = {0013-4686}, pages = {838 -- 843}, year = {2005}, language = {en} } @article{Weigand1991, author = {Weigand, Christoph}, title = {A Solution to the Scheduling Problem Taking into Account Quality}, series = {Operations research '91 : extended abstracts of the 16th Symposium on Operations Research held at the University of Trier at September 9 - 11, 1991 / [GM{\"O}OR]. Peter Gritzmann ... (eds.)}, journal = {Operations research '91 : extended abstracts of the 16th Symposium on Operations Research held at the University of Trier at September 9 - 11, 1991 / [GM{\"O}OR]. Peter Gritzmann ... (eds.)}, publisher = {Physica-Verl.}, address = {Heidelberg}, isbn = {3790806080}, pages = {373 -- 375}, year = {1991}, language = {en} } @article{MolinnusIkenJohnenetal.2022, author = {Molinnus, Denise and Iken, Heiko and Johnen, Anna Lynn and Richstein, Benjamin and Hellmich, Lena and Poghossian, Arshak and Knoch, Joachim and Sch{\"o}ning, Michael Josef}, title = {Miniaturized pH-Sensitive Field-Effect Capacitors with Ultrathin Ta₂O₅ Films Prepared by Atomic Layer Deposition}, series = {physica status solidi (a) applications and materials science}, volume = {219}, journal = {physica status solidi (a) applications and materials science}, number = {8}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202100660}, pages = {7 Seiten}, year = {2022}, abstract = {Miniaturized electrolyte-insulator-semiconductor capacitors (EISCAPs) with ultrathin gate insulators have been studied in terms of their pH-sensitive sensor characteristics: three different EISCAP systems consisting of Al-p-Si-Ta2O5(5 nm), Al-p-Si-Si3N4(1 or 2 nm)-Ta2O5 (5 nm), and Al-p-Si-SiO2(3.6 nm)-Ta2O5(5 nm) layer structures are characterized in buffer solution with different pH values by means of capacitance-voltage and constant capacitance method. The SiO2 and Si3N4 gate insulators are deposited by rapid thermal oxidation and rapid thermal nitridation, respectively, whereas the Ta2O5 film is prepared by atomic layer deposition. All EISCAP systems have a clear pH response, favoring the stacked gate insulators SiO2-Ta2O5 when considering the overall sensor characteristics, while the Si3N4(1 nm)-Ta2O5 stack delivers the largest accumulation capacitance (due to the lower equivalent oxide thickness) and a higher steepness in the slope of the capacitance-voltage curve among the studied stacked gate insulator systems.}, language = {en} } @article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, Sabrina and Wu, Chunsheng and Keusgen, Michael and Mewes, Dieter and Sch{\"o}ning, Michael Josef}, title = {DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer}, series = {Applied Materials \& Interfaces}, volume = {36}, journal = {Applied Materials \& Interfaces}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, doi = {10.1021/acsami.5b05146}, pages = {20068 -- 20075}, year = {2015}, abstract = {Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.}, language = {en} } @article{BaeckerRaueSchusseretal.2012, author = {B{\"a}cker, Matthias and Raue, Markus and Schusser, Sebastian and Jeitner, C. and Breuer, L. and Wagner, P. and Poghossian, Arshak and F{\"o}rster, Arnold and Mang, Thomas and Sch{\"o}ning, Michael Josef}, title = {Microfluidic chip with integrated microvalves based on temperature- and pH-responsive hydrogel thin films}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100763}, pages = {839 -- 845}, year = {2012}, abstract = {Two types of microvalves based on temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm) and pH-responsive poly(sodium acrylate) (PSA) hydrogel films have been developed and tested. The PNIPAAm and PSA hydrogel films were prepared by means of in situ photopolymerization directly inside the fluidic channel of a microfluidic chip fabricated by combining Si and SU-8 technologies. The swelling/shrinking properties and height changes of the PNIPAAm and PSA films inside the fluidic channel were studied at temperatures of deionized water from 14 to 36 °C and different pH values (pH 3-12) of Titrisol buffer, respectively. Additionally, in separate experiments, the lower critical solution temperature (LCST) of the PNIPAAm hydrogel was investigated by means of a differential scanning calorimetry (DSC) and a surface plasmon resonance (SPR) method. Mass-flow measurements have shown the feasibility of the prepared hydrogel films to work as an on-chip integrated temperature- or pH-responsive microvalve capable to switch the flow channel on/off.}, language = {en} } @article{BronderPoghossianKeusgenetal.2017, author = {Bronder, Thomas and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Label-free detection of double-stranded DNA molecules with polyelectrolyte-modified capacitive field-effect sensors}, series = {tm - Technisches Messen}, volume = {84}, journal = {tm - Technisches Messen}, number = {10}, publisher = {De Gruyter}, address = {Oldenbourg}, doi = {10.1515/teme-2017-0015}, pages = {628 -- 634}, year = {2017}, abstract = {In this study, polyelectrolyte-modified field-effect-based electrolyte-insulator-semiconductor (EIS) devices have been used for the label-free electrical detection of double-stranded deoxyribonucleic acid (dsDNA)molecules. The sensor-chip functionalization with a positively charged polyelectrolyte layer provides the possibility of direct adsorptive binding of negatively charged target DNA oligonucleotides onto theSiO2-chip surface.EIS sensors can be utilized as a tool to detect surface-charge changes; the electrostatic adsorption of oligonucleotides onto the polyelectrolyte layer leads to a measureable surface-potential change. Signals of 39mV have been recorded after the incubation with the oligonucleotide solution. Besides the electrochemical experiments, the successful adsorption of dsDNA onto the polyelectrolyte layer has been verified via fluorescence microscopy. The presented results demonstrate that the signal recording of EISchips, which are modified with a polyelectrolyte layer, canbe used as a favorable approach for a fast, cheap and simple detection method for dsDNA.}, language = {en} } @article{JablonskiPoghossianSeverinetal.2021, author = {Jablonski, Melanie and Poghossian, Arshak and Severin, Robin and Keusgen, Michael and Wege, Christian and Sch{\"o}ning, Michael Josef}, title = {Capacitive Field-Effect Biosensor Studying Adsorption of Tobacco Mosaic Virus Particles}, series = {Micromachines}, volume = {12}, journal = {Micromachines}, number = {1}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/mi12010057}, pages = {Artikel 57}, year = {2021}, abstract = {Plant virus-like particles, and in particular, tobacco mosaic virus (TMV) particles, are increasingly being used in nano- and biotechnology as well as for biochemical sensing purposes as nanoscaffolds for the high-density immobilization of receptor molecules. The sensitive parameters of TMV-assisted biosensors depend, among others, on the density of adsorbed TMV particles on the sensor surface, which is affected by both the adsorption conditions and surface properties of the sensor. In this work, Ta₂O₅-gate field-effect capacitive sensors have been applied for the label-free electrical detection of TMV adsorption. The impact of the TMV concentration on both the sensor signal and the density of TMV particles adsorbed onto the Ta₂O₅-gate surface has been studied systematically by means of field-effect and scanning electron microscopy methods. In addition, the surface density of TMV particles loaded under different incubation times has been investigated. Finally, the field-effect sensor also demonstrates the label-free detection of penicillinase immobilization as model bioreceptor on TMV particles.}, language = {en} } @article{ValeroBung2016, author = {Valero, Daniel and Bung, Daniel Bernhard}, title = {Sensitivity of turbulent Schmidt number and turbulence model to simulations of jets in crossflow}, series = {Environmental Modelling and Software}, volume = {82}, journal = {Environmental Modelling and Software}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1364-8152 (electronic)}, doi = {10.1016/j.envsoft.2016.04.030}, pages = {218 -- 228}, year = {2016}, abstract = {Environmental discharges have been traditionally designed by means of cost-intensive and time-consuming experimental studies. Some extensively validated models based on an integral approach have been often employed for water quality problems, as recommended by USEPA (i.e.: CORMIX). In this study, FLOW-3D is employed for a full 3D RANS modelling of two turbulent jet-to-crossflow cases, including free surface jet impingement. Results are compared to both physical modelling and CORMIX to better assess model performance. Turbulence measurements have been collected for a better understanding of turbulent diffusion's parameter sensitivity. Although both studied models are generally able to reproduce jet trajectory, jet separation downstream of the impingement has been reproduced only by RANS modelling. Additionally, concentrations are better reproduced by FLOW-3D when the proper turbulent Schmidt number is used. This study provides a recommendation on the selection of the turbulence model and the turbulent Schmidt number for future outfall structures design studies.}, language = {en} }