@inproceedings{GrundmannBauerBodenetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Boden, Ralf Christian and Ceriotti, Matteo and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Hercik, D. and Herique, A. and Ho, Tra-Mi and Jahnke, Rico and Kofman, Wlodek and Lange, Caroline and Lichtenheldt, Roy and McInnes, Colin R. and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Moore, Iain and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Rogez, Yves and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and Toth, Norbert and Viavattene, Giulia and Wejmo, Elisabet and Wolff, Friederike and Ziach, Christian}, title = {Responsive integrated small spacecraft solar sail and payload design concepts and missions}, series = {Conference: 5th International Symposium on Solar Sailing (ISSS 2019)}, booktitle = {Conference: 5th International Symposium on Solar Sailing (ISSS 2019)}, year = {2019}, abstract = {Asteroid mining has the potential to greatly reduce the cost of in-space manufacturing, production of propellant for space transportation and consumables for crewed spacecraft, compared to launching the required resources from Earth's deep gravity well. This paper discusses the top-level mission architecture and trajectory design for these resource-return missions, comparing high-thrust trajectories with continuous low-thrust solar-sail trajectories. This work focuses on maximizing the economic Net Present Value, which takes the time-cost of finance into account and therefore balances the returned resource mass and mission duration. The different propulsion methods will then be compared in terms of maximum economic return, sets of attainable target asteroids, and mission flexibility. This paper provides one more step towards making commercial asteroid mining an economically viable reality by integrating trajectory design, propulsion technology and economic modelling.}, language = {en} } @inproceedings{GrundmannBauerBodenetal.2019, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Boden, Ralf and Ceriotti, Matteo and Chand, Suditi and Cordero, Federico and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Heiligers, Jeannette and Herč{\´i}k, David and H{\´e}rique, Alain and Ho, Tra-Mi and Jahnke, Rico and Kofman, Wlodek and Lange, Caroline and Lichtenheldt, Roy and McInnes, Colin and Meß, Jan-Gerd and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Moore, Iain and Pelivan, Ivanka and Peloni, Alessandro and Plettemeier, Dirk and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Rogez, Yves and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Sznajder, Maciej and T{\´o}th, Norbert and Vergaaij, Merel and Viavattene, Giulia and Wejmo, Elisabet and Wiedemann, Carsten and Wolff, Friederike and Ziach, Christian}, title = {Flights are ten a sail - Re-use and commonality in the design and system engineering of small spacecraft solar sail missions with modular hardware for responsive and adaptive exploration}, series = {70th International Astronautical Congress (IAC)}, booktitle = {70th International Astronautical Congress (IAC)}, isbn = {9781713814856}, pages = {1 -- 7}, year = {2019}, language = {en} } @article{SpietzSproewitzSeefeldtetal.2021, author = {Spietz, Peter and Spr{\"o}witz, Tom and Seefeldt, Patric and Grundmann, Jan Thimo and Jahnke, Rico and Mikschl, Tobias and Mikulz, Eugen and Montenegro, Sergio and Reershemius, Siebo and Renger, Thomas and Ruffer, Michael and Sasaki, Kaname and Sznajder, Maciej and T{\´o}th, Norbert and Ceriotti, Matteo and Dachwald, Bernd and Macdonald, Malcolm and McInnes, Colin and Seboldt, Wolfgang and Quantius, Dominik and Bauer, Waldemar and Wiedemann, Carsten and Grimm, Christian D. and Hercik, David and Ho, Tra-Mi and Lange, Caroline and Schmitz, Nicole}, title = {Paths not taken - The Gossamer roadmap's other options}, series = {Advances in Space Research}, volume = {67}, journal = {Advances in Space Research}, number = {9}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0273-1177}, doi = {10.1016/j.asr.2021.01.044}, pages = {2912 -- 2956}, year = {2021}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2017, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian D. and Lange, Caroline and Ulamec, Stephan and Ziach, Christian and Spr{\"o}witz, Tom and Ruffer, Michael and Seefeldt, Patric and Spietz, Peter and Toth, Norbert and Mimasu, Yuya and Rittweger, Andreas and Bibring, Jean-Pierre and Braukhane, Andy and Boden, Ralf Christian and Dumont, Etienne and Jahnke, Stephan Siegfried and Jetzschmann, Michael and Kr{\"u}ger, Hans and Lange, Michael and Gomez, Antonio Martelo and Massonett, Didier and Okada, Tatsuaki and Sagliano, Marco and Sasaki, Kaname and Schr{\"o}der, Silvio and Sippel, Martin and Skoczylas, Thomas and Wejmo, Elisabet}, title = {Small landers and separable sub-spacecraft for near-term solar sails}, series = {The Fourth International Symposium on Solar Sailing 2017}, booktitle = {The Fourth International Symposium on Solar Sailing 2017}, pages = {1 -- 10}, year = {2017}, abstract = {Following the successful PHILAE landing with ESA's ROSETTA probe and the launch of the MINERVA rovers and the Mobile Asteroid Surface Scout, MASCOT, aboard the JAXA space probe, HAYABUSA2, to asteroid (162173) Ryugu, small landers have found increasing interest. Integrated at the instrument level in their mothership they support small solar system body studies. With efficient capabilities, resource-friendly design and inherent robustness they are an attractive exploration mission element. We discuss advantages and constraints of small sub-spacecraft, focusing on emerging areas of activity such as asteroid diversity studies, planetary defence, and asteroid mining, on the background of our projects PHILAE, MASCOT, MASCOT2, the JAXA-DLR Solar Power Sail Lander Design Study, and others. The GOSSAMER-1 solar sail deployment concept also involves independent separable sub-spacecraft operating synchronized to deploy the sail. Small spacecraft require big changes in the way we do things and occasionally a little more effort than would be anticipated based on a traditional large spacecraft approach. In a Constraints-Driven Engineering environment we apply Concurrent Design and Engineering (CD/CE), Concurrent Assembly, Integration and Verification (CAIV) and Model-Based Systems Engineering (MBSE). Near-term solar sails will likely be small spacecraft which we expect to harmonize well with nano-scale separable instrument payload packages.}, language = {en} } @inproceedings{GrundmannBauerBorchersetal.2018, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Borchers, Kai and Dumont, Etienne and Grimm, Christian D. and Ho, Tra-Mi and Jahnke, Rico and Lange, Caroline and Maiwald, Volker and Mikulz, Eugen and Quantius, Dominik and Reershemius, Siebo and Renger, Thomas and Riemann, Johannes and Sasaki, Kaname and Seefeldt, Patric and Spietz, Peter and Spr{\"o}witz, Tom and Toth, Norbert and Wejmo, Elisabet and Biele, Jens and Krause, Christian and Cerotti, Matteo and Peloni, Alessandro and Dachwald, Bernd}, title = {Small Spacecraft Solar Sailing for Small Solar System Body Multiple Rendezvous and Landing}, series = {2018 IEEE Aerospace Conference : 3-10 March 2018}, booktitle = {2018 IEEE Aerospace Conference : 3-10 March 2018}, isbn = {978-1-5386-2014-4}, pages = {20 Seiten}, year = {2018}, language = {en} } @inproceedings{GrundmannBodenCeriottietal.2017, author = {Grundmann, Jan Thimo and Boden, Ralf and Ceriotti, Matteo and Dachwald, Bernd and Dumont, Etienne and Grimm, Christian D. and Lange, Caroline and Lichtenheldt, Roy and Pelivan, Ivanka and Peloni, Alessandro and Riemann, Johannes and Spr{\"o}witz, Tom and Tardivel, Simon}, title = {Soil to sail-asteroid landers on near-term sailcraft as an evolution of the GOSSAMER small spacecraft solar sail concept for in-situ characterization}, series = {5th IAA Planetary Defense Conference}, booktitle = {5th IAA Planetary Defense Conference}, pages = {30 Seiten}, year = {2017}, language = {en} } @inproceedings{GrundmannBorellaCeriottietal.2021, author = {Grundmann, Jan Thimo and Borella, Laura and Ceriotti, Matteo and Chand, Suditi and Cordero, Federico and Dachwald, Bernd and Fexer, Sebastian and Grimm, Christian D. and Hendrikse, Jeffrey and Herč{\´i}k, David and Herique, Alain and Hillebrandt, Martin and Ho, Tra-Mi and Kesseler, Lars and Laabs, Martin and Lange, Caroline and Lange, Michael and Lichtenheldt, Roy and McInnes, Colin R. and Moore, Iain and Peloni, Alessandro and Plettenmeier, Dirk and Quantius, Dominik and Seefeldt, Patric and Venditti, Flaviane c. F. and Vergaaij, Merel and Viavattene, Giulia and Virkki, Anne K. and Zander, Martin}, title = {More bucks for the bang: new space solutions, impact tourism and one unique science \& engineering opportunity at T-6 months and counting}, series = {7th IAA Planetary Defense Conference}, booktitle = {7th IAA Planetary Defense Conference}, year = {2021}, abstract = {For now, the Planetary Defense Conference Exercise 2021's incoming fictitious(!), asteroid, 2021 PDC, seems headed for impact on October 20th, 2021, exactly 6 months after its discovery. Today (April 26th, 2021), the impact probability is 5\%, in a steep rise from 1 in 2500 upon discovery six days ago. We all know how these things end. Or do we? Unless somebody kicked off another headline-grabbing media scare or wants to keep civil defense very idle very soon, chances are that it will hit (note: this is an exercise!). Taking stock, it is barely 6 months to impact, a steadily rising likelihood that it will actually happen, and a huge uncertainty of possible impact energies: First estimates range from 1.2 MtTNT to 13 GtTNT, and this is not even the worst-worst case: a 700 m diameter massive NiFe asteroid (covered by a thin veneer of Ryugu-black rubble to match size and brightness), would come in at 70 GtTNT. In down to Earth terms, this could be all between smashing fireworks over some remote area of the globe and a 7.5 km crater downtown somewhere. Considering the deliberate and sedate ways of development of interplanetary missions it seems we can only stand and stare until we know well enough where to tell people to pack up all that can be moved at all and save themselves. But then, it could just as well be a smaller bright rock. The best estimate is 120 m diameter from optical observation alone, by 13\% standard albedo. NASA's upcoming DART mission to binary asteroid (65803) Didymos is designed to hit such a small target, its moonlet Dimorphos. The Deep Impact mission's impactor in 2005 successfully guided itself to the brightest spot on comet 9P/Tempel 1, a relatively small feature on the 6 km nucleus. And 'space' has changed: By the end of this decade, one satellite communication network plans to have launched over 11000 satellites at a pace of 60 per launch every other week. This level of series production is comparable in numbers to the most prolific commercial airliners. Launch vehicle production has not simply increased correspondingly - they can be reused, although in a trade for performance. Optical and radio astronomy as well as planetary radar have made great strides in the past decade, and so has the design and production capability for everyday 'high-tech' products. 60 years ago, spaceflight was invented from scratch within two years, and there are recent examples of fast-paced space projects as well as a drive towards 'responsive space'. It seems it is not quite yet time to abandon all hope. We present what could be done and what is too close to call once thinking is shoved out of the box by a clear and present danger, to show where a little more preparedness or routine would come in handy - or become decisive. And if we fail, let's stand and stare safely and well instrumented anywhere on Earth together in the greatest adventure of science.}, language = {en} } @inproceedings{GrundmannBieleDachwaldetal.2016, author = {Grundmann, Jan Thimo and Biele, Jens and Dachwald, Bernd and Grimm, Christian and Lange, Caroline and Ulamec, Stephan}, title = {Small spacecraft for small solar system body science, planetary defence and applications}, series = {IEEE Aerospace Conference 2016}, booktitle = {IEEE Aerospace Conference 2016}, pages = {1 -- 20}, year = {2016}, abstract = {Following the recent successful landings and occasional re-awakenings of PHILAE, the lander carried aboard ROSETTA to comet 67P/Churyumov-Gerasimenko, and the launch of the Mobile Asteroid Surface Scout, MASCOT, aboard the HAYABUSA2 space probe to asteroid (162173) Ryugu we present an overview of the characteristics and peculiarities of small spacecraft missions to small solar system bodies (SSSB). Their main purpose is planetary science which is transitioning from a 'pure' science of observation of the distant to one also supporting in-situ applications relevant for life on Earth. Here we focus on missions at the interface of SSSB science and planetary defence applications. We provide a brief overview of small spacecraft SSSB missions and on this background present recent missions, projects and related studies at the German Aerospace Center, DLR, that contribute to the worldwide planetary defence community. These range from Earth orbit technology demonstrators to active science missions in interplanetary space. We provide a summary of experience from recently flown missions with DLR participation as well as a number of studies. These include PHILAE, the lander of ESA's ROSETTA comet rendezvous mission now on the surface of comet 67P/Churyumov-Gerasimenko, and the Mobile Asteroid Surface Scout, MASCOT, now in cruise to the ~1 km diameter C-type near-Earth asteroid (162173) Ryugu aboard the Japanese sample-return probe HAYABUSA2. We introduce the differences between the conventional methods employed in the design, integration and testing of large spacecraft and the new approaches developed by small spacecraft projects. We expect that the practical experience that can be gained from projects on extremely compressed timelines or with high-intensity operation phases on a newly explored small solar system body can contribute significantly to the study, preparation and realization of future planetary defence related missions. One is AIDA (Asteroid Impact \& Deflection Assessment), a joint effort of ESA, JHU/APL, NASA, OCA and DLR, combining JHU/APL's DART (Double Asteroid Redirection Test) and ESA's AIM (Asteroid Impact Monitor) spacecraft in a mission towards near-Earth binary asteroid system (65803) Didymos. DLR is currently applying MASCOT heritage and lessons learned to the design of MASCOT2, a lander for the AIM mission to support a bistatic low frequency radar experiment with PHILAE/ROSETTA CONSERT heritage to explore the inner structure of Didymoon which is the designated impact target for DART.}, language = {en} } @incollection{DachwaldBoehnhardtBrojetal.2014, author = {Dachwald, Bernd and Boehnhardt, Herrmann and Broj, Ulrich and Geppert, Ulrich R. M. E. and Grundmann, Jan Thimo and Seboldt, Wolfgang and Seefeldt, Patric and Spietz, Peter and Johnson, Les and K{\"u}hrt, Ekkehard and Mottola, Stefano and Macdonald, Malcolm and McInnes, Colin R. and Vasile, Massimiliano and Reinhard, Ruedeger}, title = {Gossamer roadmap technology reference study for a multiple NEO Rendezvous Mission}, series = {Advances in solar sailing}, booktitle = {Advances in solar sailing}, publisher = {Springer}, address = {Berlin [u.a.]}, isbn = {978-3-642-34906-5 (Print) ; 978-3-642-34907-2 (E-Book)}, pages = {211 -- 226}, year = {2014}, abstract = {A technology reference study for a multiple near-Earth object (NEO) rendezvous mission with solar sailcraft is currently carried out by the authors of this paper. The investigated mission builds on previous concepts, but adopts a strong micro-spacecraft philosophy based on the DLR/ESA Gossamer technology. The main scientific objective of the mission is to explore the diversity of NEOs. After direct interplanetary insertion, the solar sailcraft should—within less than 10 years—rendezvous three NEOs that are not only scientifically interesting, but also from the point of human spaceight and planetary defense. In this paper, the objectives of the study are outlined and a preliminary potential mission profile is presented.}, language = {en} } @inproceedings{GrundmannBauerBieleetal.2015, author = {Grundmann, Jan Thimo and Bauer, Waldemar and Biele, Jens and Cordero, Frederico and Dachwald, Bernd and Koncz, Alexander and Krause, Christian and Mikschl, Tobias and Montenegro, Sergio and Quantius, Dominik and Ruffer, Michael and Sasaki, Kaname and Schmitz, Nicole and Seefeldt, Patric and T{\´o}th, Norbert and Wejmo, Elisabet}, title = {From Sail to Soil - Getting Sailcraft Out of the Harbour on a Visit to One of Earth's Nearest Neighbours}, series = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, booktitle = {4th IAA Planetary Denfense Conference - PDC 2015, 13-17 April 2015, Frascati, Roma, Italy}, pages = {20 S.}, year = {2015}, language = {en} }