@article{HenriquesJuradoGrieseretal.2020, author = {Henriques, A. and Jurado, B. and Grieser, M. and Denis-Petit, D. and Chiron, T. and Gaudefroy, L. and Glorius, J. and Langer, Christoph and Litvinov, Yu. A. and Mathieu, L. and Meot, V. and Perez-Sanchez, R. and Pibernat, J. and Reifarth, R. and Roig, O. and Thomas, B. and Thomas, B. A. and Thomas, J. C. and Tsekhanovich, I.}, title = {Indirect measurements of neutron cross-secti at heavy-ion storage rings}, series = {Journal of Physics: Conference Series}, volume = {1668}, journal = {Journal of Physics: Conference Series}, number = {Art. 012019}, publisher = {IOP}, address = {Bristol}, doi = {10.1088/1742-6596/1668/1/012019}, year = {2020}, abstract = {Cross sections for neutron-induced reactions of short-lived nuclei are essential for nuclear astrophysics since these reactions in the stars are responsible for the production of most heavy elements in the universe. These reactions are also key in applied domains like energy production and medicine. Nevertheless, neutron-induced cross-section measurements can be extremely challenging or even impossible to perform due to the radioactivity of the targets involved. Indirect measurements through the surrogate-reaction method can help to overcome these difficulties. The surrogate-reaction method relies on the use of an alternative reaction that will lead to the formation of the same excited nucleus as in the neutron-induced reaction of interest. The decay probabilities (for fission, neutron and gamma-ray emission) of the nucleus produced via the surrogate reaction allow one to constrain models and the prediction of the desired neutron cross sections. We propose to perform surrogate reaction measurements in inverse kinematics at heavy-ion storage rings, in particular at the CRYRING@ESR of the GSI/FAIR facility. We present the conceptual idea of the most promising setup to measure for the first time simultaneously the fission, neutron and gamma-ray emission probabilities. The results of the first simulations considering the 238U(d,d') reaction are shown, as well as new technical developments that are being carried out towards this set-up.}, language = {en} } @article{VargaDavinsonGloriusetal.2020, author = {Varga, Laszlo and Davinson, Thomas and Glorius, Jan and Jurado, Beatrix and Langer, Christoph and Lederer-Woods, Claudia and Litvinov, Yuri A. and Reifarth, Rene and Slavkovska, Zuzana and St{\"o}hlker, Thomas and Woods, Phil J. and Xing, Yuan Ming}, title = {Towards background-free studies of capture reaction in a heavy-ion storage ring}, series = {Journal of Physics: Conference Series}, volume = {1668}, journal = {Journal of Physics: Conference Series}, number = {Art 012046}, publisher = {IOP}, address = {Bristol}, year = {2020}, abstract = {Stored and cooled, highly-charged ions offer unprecedented capabilities for precision studies in the realm of atomic, nuclear structure and astrophysics[1]. After the successful investigation of the 96Ru(p,7)97Rh reaction cross section in 2009[2], the first measurement of the 124Xe(p,7)125Cs reaction cross section has been performed with decelerated, fully-ionized 124Xe ions in 2016 at the Experimental Storage Ring (ESR) of GSI[3]. Using a Double Sided Silicon Strip Detector, introduced directly into the ultra-high vacuum environment of a storage ring, the 125Cs proton-capture products have been successfully detected. The cross section has been measured at 5 different energies between 5.5AMeV and 8AMeV, on the high energy tail of the Gamow-window for hot, explosive scenarios such as supernovae and X-ray binaries. The elastic scattering on the H2 gas jet target is the major source of background to count the (p,7) events. Monte Carlo simulations show that an additional slit system in the ESR in combination with the energy information of the Si detector will enable background free measurements of the proton-capture products. The corresponding hardware is being prepared and will increase the sensitivity of the method tremendously.}, language = {en} } @article{QuittmannMeskemperAlbrachtetal.2020, author = {Quittmann, Oliver J. and Meskemper, Joshua and Albracht, Kirsten and Abel, Thomas and Foitschik, Tina and Str{\"u}der, Heiko K.}, title = {Normalising surface EMG of ten upper-extremity muscles in handcycling: Manual resistance vs. sport-specific MVICs}, series = {Journal of Electromyography and Kinesiology}, volume = {51}, journal = {Journal of Electromyography and Kinesiology}, number = {Article 102402}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1050-6411}, doi = {10.1016/j.jelekin.2020.102402}, year = {2020}, abstract = {Muscular activity in terms of surface electromyography (sEMG) is usually normalised to maximal voluntary isometric contractions (MVICs). This study aims to compare two different MVIC-modes in handcycling and examine the effect of moving average window-size. Twelve able-bodied male competitive triathletes performed ten MVICs against manual resistance and four sport-specific trials against fixed cranks. sEMG of ten muscles [M. trapezius (TD); M. pectoralis major (PM); M. deltoideus, Pars clavicularis (DA); M. deltoideus, Pars spinalis (DP); M. biceps brachii (BB); M. triceps brachii (TB); forearm flexors (FC); forearm extensors (EC); M. latissimus dorsi (LD) and M. rectus abdominis (RA)] was recorded and filtered using moving average window-sizes of 150, 200, 250 and 300 ms. Sport-specific MVICs were higher compared to manual resistance for TB, DA, DP and LD, whereas FC, TD, BB and RA demonstrated lower values. PM and EC demonstrated no significant difference between MVIC-modes. Moving average window-size had no effect on MVIC outcomes. MVIC-mode should be taken into account when normalised sEMG data are illustrated in handcycling. Sport-specific MVICs seem to be suitable for some muscles (TB, DA, DP and LD), but should be augmented by MVICs against manual/mechanical resistance for FC, TD, BB and RA.}, language = {en} } @article{MalanHamerKaeneletal.2020, author = {Malan, Leone and Hamer, Mark and K{\"a}nel, Roland von and Kotliar, Konstantin and Wyk, Roelof D. van and Lambert, Gavin W. and Vilser, Walthard and Ziemssen, Tjalf and Schlaich, Markus P. and Smith, Wayne and Magnusson, Martin and Wentzel, Annemarie and Myburgh, Carlien E. and Steyn, Hendrik S. and Malan, Nico T.}, title = {Delayed retinal vein recovery responses indicate both non-adaptation to stress as well as increased risk for stroke: the SABPA study}, series = {Cardiovascular Journal of Africa}, volume = {26}, journal = {Cardiovascular Journal of Africa}, number = {31}, publisher = {Clinics Cardive Publishing}, address = {Durbanville}, issn = {1680-0745}, doi = {10.5830/CVJA-2020-031}, pages = {1 -- 12}, year = {2020}, language = {en} } @incollection{FateriGebhardt2020, author = {Fateri, Miranda and Gebhardt, Andreas}, title = {Introduction to Additive Manufacturing}, series = {3D Printing of Optical Components}, booktitle = {3D Printing of Optical Components}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-58960-8}, doi = {10.1007/978-3-030-58960-8_1}, pages = {1 -- 22}, year = {2020}, abstract = {Additive manufacturing (AM) works by creating objects layer by layer in a manner similar to a 2D printer with the "printed" layers stacked on top of each other. The layer-wise manufacturing nature of AM enables fabrication of freeform geometries which cannot be fabricated using conventional manufacturing methods as a one part. Depending on how each layer is created and bonded to the adjacent layers, different AM methods have been developed. In this chapter, the basic terms, common materials, and different methods of AM are described, and their potential applications are discussed.}, language = {en} } @article{GossmannThomasHorvathetal.2020, author = {Gossmann, Matthias and Thomas, Ulrich and Horv{\´a}th, Andr{\´a}s and Dragicevic, Elena and Stoelzle-Feix, Sonja and Jung, Alexander and Raman, Aravind Hariharan and Staat, Manfred and Linder, Peter}, title = {A higher-throughput approach to investigate cardiac contractility in vitro under physiological mechanical conditions}, series = {Journal of Pharmacological and Toxicological Methods}, volume = {105}, journal = {Journal of Pharmacological and Toxicological Methods}, number = {Article 106843}, publisher = {Elsevier}, address = {New York, NY}, doi = {10.1016/j.vascn.2020.106843}, year = {2020}, language = {en} } @book{LohseLaumannWolf2020, author = {Lohse, Wolfram and Laumann, J{\"o}rg and Wolf, Christian}, title = {Stahlbau 2}, edition = {21., vollst. akt. und {\"u}berarb. Aufl.}, publisher = {Springer Vieweg}, address = {Wiesbaden}, isbn = {978-3-8348-2116-4}, doi = {10.1007/978-3-8348-2116-4}, year = {2020}, language = {de} } @article{GoettenHavermannBraunetal.2020, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Marino, Matthew and Bil, Cees}, title = {Improved Form Factor for Drag Estimation of Fuselages with Various Cross Sections}, series = {Journal of Aircraft}, journal = {Journal of Aircraft}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-3868}, doi = {10.2514/1.C036032}, pages = {1 -- 13}, year = {2020}, abstract = {The paper presents an aerodynamic investigation of 70 different streamlined bodies with fineness ratios ranging from 2 to 10. The bodies are chosen to idealize both unmanned and small manned aircraft fuselages and feature cross-sectional shapes that vary from circular to quadratic. The study focuses on friction and pressure drag in dependency of the individual body's fineness ratio and cross section. The drag forces are normalized with the respective body's wetted area to comply with an empirical drag estimation procedure. Although the friction drag coefficient then stays rather constant for all bodies, their pressure drag coefficients decrease with an increase in fineness ratio. Referring the pressure drag coefficient to the bodies' cross-sectional areas shows a distinct pressure drag minimum at a fineness ratio of about three. The pressure drag of bodies with a quadratic cross section is generally higher than for bodies of revolution. The results are used to derive an improved form factor that can be employed in a classic empirical drag estimation method. The improved formulation takes both the fineness ratio and cross-sectional shape into account. It shows superior accuracy in estimating streamlined body drag when compared with experimental data and other form factor formulations of the literature.}, language = {en} } @article{PoghossianJablonskiMolinnusetal.2020, author = {Poghossian, Arshak and Jablonski, Melanie and Molinnus, Denise and Wege, Christina and Sch{\"o}ning, Michael Josef}, title = {Field-Effect Sensors for Virus Detection: From Ebola to SARS-CoV-2 and Plant Viral Enhancers}, series = {Frontiers in Plant Science}, volume = {11}, journal = {Frontiers in Plant Science}, number = {Article 598103}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fpls.2020.598103}, pages = {1 -- 14}, year = {2020}, abstract = {Coronavirus disease 2019 (COVID-19) is a novel human infectious disease provoked by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, no specific vaccines or drugs against COVID-19 are available. Therefore, early diagnosis and treatment are essential in order to slow the virus spread and to contain the disease outbreak. Hence, new diagnostic tests and devices for virus detection in clinical samples that are faster, more accurate and reliable, easier and cost-efficient than existing ones are needed. Due to the small sizes, fast response time, label-free operation without the need for expensive and time-consuming labeling steps, the possibility of real-time and multiplexed measurements, robustness and portability (point-of-care and on-site testing), biosensors based on semiconductor field-effect devices (FEDs) are one of the most attractive platforms for an electrical detection of charged biomolecules and bioparticles by their intrinsic charge. In this review, recent advances and key developments in the field of label-free detection of viruses (including plant viruses) with various types of FEDs are presented. In recent years, however, certain plant viruses have also attracted additional interest for biosensor layouts: Their repetitive protein subunits arranged at nanometric spacing can be employed for coupling functional molecules. If used as adapters on sensor chip surfaces, they allow an efficient immobilization of analyte-specific recognition and detector elements such as antibodies and enzymes at highest surface densities. The display on plant viral bionanoparticles may also lead to long-time stabilization of sensor molecules upon repeated uses and has the potential to increase sensor performance substantially, compared to conventional layouts. This has been demonstrated in different proof-of-concept biosensor devices. Therefore, richly available plant viral particles, non-pathogenic for animals or humans, might gain novel importance if applied in receptor layers of FEDs. These perspectives are explained and discussed with regard to future detection strategies for COVID-19 and related viral diseases.}, language = {en} } @article{ElDeibButenwegKlinkel2020, author = {El-Deib, Khaled and Butenweg, Christoph and Klinkel, Sven}, title = {Erdbebennachweis von Mauerwerksbauten mit realistischen Modellen und erh{\"o}hten Verhaltensbeiwerten}, series = {Bautechnik}, volume = {97}, journal = {Bautechnik}, number = {11}, publisher = {Ernst \& Sohn}, address = {Berlin}, doi = {10.1002/bate.202000016}, pages = {756 -- 765}, year = {2020}, abstract = {Die Anwendung des linearen Nachweiskonzepts auf Mauerwerksbauten f{\"u}hrt dazu, dass bereits heute Standsicherheitsnachweise f{\"u}r Geb{\"a}ude mit {\"u}blichen Grundrissen in Gebieten mit moderaten Erdbebeneinwirkungen nicht mehr gef{\"u}hrt werden k{\"o}nnen. Diese Problematik wird sich in Deutschland mit der Einf{\"u}hrung kontinuierlicher probabilistischer Erdbebenkarten weiter versch{\"a}rfen. Aufgrund der Erh{\"o}hung der seismischen Einwirkungen, die sich vielerorts ergibt, ist es erforderlich, die vorhandenen, bislang nicht ber{\"u}cksichtigten Tragf{\"a}higkeitsreserven in nachvollziehbaren Nachweiskonzepten in der Baupraxis verf{\"u}gbar zu machen. Der vorliegende Beitrag stellt ein Konzept f{\"u}r die geb{\"a}udespezifische Ermittlung von erh{\"o}hten Verhaltensbeiwerten vor. Die Verhaltensbeiwerte setzen sich aus drei Anteilen zusammen, mit denen die Lastumverteilung im Grundriss, die Verformungsf{\"a}higkeit und Energiedissipation sowie die {\"U}berfestigkeiten ber{\"u}cksichtigt werden. F{\"u}r die rechnerische Ermittlung dieser drei Anteile wird ein nichtlineares Nachweiskonzept auf Grundlage von Pushover-Analysen vorgeschlagen, in denen die Interaktionen von W{\"a}nden und Geschossdecken durch einen Einspanngrad beschrieben werden. F{\"u}r die Bestimmung der Einspanngrade wird ein nichtlinearer Modellierungsansatz eingef{\"u}hrt, mit dem die Interaktion von W{\"a}nden und Decken abgebildet werden kann. Die Anwendung des Konzepts mit erh{\"o}hten geb{\"a}udespezifischen Verhaltensbeiwerten wird am Beispiel eines Mehrfamilienhauses aus Kalksandsteinen demonstriert. Die Ergebnisse der linearen Nachweise mit erh{\"o}hten Verhaltensbeiwerten f{\"u}r dieses Geb{\"a}ude liegen deutlich n{\"a}her an den Ergebnissen nichtlinearer Nachweise und somit bleiben {\"u}bliche Grundrisse in Erdbebengebieten mit den traditionellen linearen Rechenans{\"a}tzen nachweisbar.}, language = {de} }