@inproceedings{Staat2003, author = {Staat, Manfred}, title = {Design by Analysis of Pressure Components by non-linear Optimization}, year = {2003}, abstract = {This paper presents the direct route to Design by Analysis (DBA) of the new European pressure vessel standard in the language of limit and shakedown analysis (LISA). This approach leads to an optimization problem. Its solution with Finite Element Analysis is demonstrated for some examples from the DBA-Manual. One observation from the examples is, that the optimisation approach gives reliable and close lower bound solutions leading to simple and optimised design decision.}, language = {en} } @article{StaatSchwartzLangetal.2003, author = {Staat, Manfred and Schwartz, M. and Lang, H. and Wirtz, K. and Heitzer, M.}, title = {Design by Analysis of Pressure Components by non-linear Optimization}, series = {The 10th International Conference on Pressure Vessel Technology, July 7-10, 2003, Vienna, Austria, Proceedings ICPVT-10 / Zeman, J. L. [ed]}, journal = {The 10th International Conference on Pressure Vessel Technology, July 7-10, 2003, Vienna, Austria, Proceedings ICPVT-10 / Zeman, J. L. [ed]}, publisher = {{\"O}GS, {\"O}sterreichische Gesellschaft f{\"u}r Schweißtechnik}, address = {Wien}, isbn = {3950152814}, pages = {59 -- 65}, year = {2003}, language = {en} } @article{StaatHeitzer2002, author = {Staat, Manfred and Heitzer, M.}, title = {Limit and Shakedown Analysis with Uncertain Data}, series = {Stochastic optimization techniques : numerical methods and technical applications / Marti, K. [ed]}, journal = {Stochastic optimization techniques : numerical methods and technical applications / Marti, K. [ed]}, publisher = {Springer}, address = {Heidelberg}, isbn = {3-540-42889-5}, pages = {241 -- 254}, year = {2002}, language = {en} } @article{JablonskiMuenstermannNorketal.2021, author = {Jablonski, Melanie and M{\"u}nstermann, Felix and Nork, Jasmina and Molinnus, Denise and Muschallik, Lukas and Bongaerts, Johannes and Wagner, Torsten and Keusgen, Michael and Siegert, Petra and Sch{\"o}ning, Michael Josef}, title = {Capacitive field-effect biosensor applied for the detection of acetoin in alcoholic beverages and fermentation broths}, series = {physica status solidi (a) applications and materials science}, volume = {218}, journal = {physica status solidi (a) applications and materials science}, number = {13}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.202000765}, pages = {7 Seiten}, year = {2021}, abstract = {An acetoin biosensor based on a capacitive electrolyte-insulator-semiconductor (EIS) structure modified with the enzyme acetoin reductase, also known as butane-2,3-diol dehydrogenase (Bacillus clausii DSM 8716ᵀ), is applied for acetoin detection in beer, red wine, and fermentation broth samples for the first time. The EIS sensor consists of an Al/p-Si/SiO₂/Ta₂O₅ layer structure with immobilized acetoin reductase on top of the Ta₂O₅ transducer layer by means of crosslinking via glutaraldehyde. The unmodified and enzyme-modified sensors are electrochemically characterized by means of leakage current, capacitance-voltage, and constant capacitance methods, respectively.}, language = {en} } @article{StadlerZerlinDigeletal.2008, author = {Stadler, Andreas M. and Zerlin, Kay and Digel, Ilya and B{\"u}ldt, Georg and Zaccai, Guiseppe and Artmann, Gerhard}, title = {Dynamics and interactions of hemoglobin in red blood cells}, series = {Tissue Engineering Part A. 14 (2008), H. 5}, journal = {Tissue Engineering Part A. 14 (2008), H. 5}, isbn = {1937-3341}, pages = {724 -- 724}, year = {2008}, language = {en} } @article{StaatBaroudTopcuetal.2008, author = {Staat, Manfred and Baroud, G. and Topcu, M. and Sponagel, Stefan}, title = {Soft Materials in Technology and Biology - Characteristics, Properties, and Parameter Identification}, series = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, journal = {Bioengineering in Cell and Tissue Research / Artmann, Gerhard M. ; Chien, Shu (Eds.)}, publisher = {Springer}, address = {Berlin}, isbn = {978-3-540-75408-4}, pages = {253 -- 315}, year = {2008}, language = {en} } @article{AkimbekovDigelTastambeketal.2013, author = {Akimbekov, Nuraly S. and Digel, Ilya and Tastambek, K. T. and Zhubanova, A. A.}, title = {Biocompatibility of carbonized rice husk with a rat heart cells line H9c2}, series = {Experimental Biology}, volume = {59}, journal = {Experimental Biology}, number = {3/1}, issn = {1563-0218}, pages = {23 -- 25}, year = {2013}, language = {en} } @article{BhattaraiStaat2019, author = {Bhattarai, Aroj and Staat, Manfred}, title = {A computational study of organ relocation after laparoscopic pectopexy to repair posthysterectomy vaginal vault prolapse}, series = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization}, journal = {Computer Methods in Biomechanics and Biomedical Engineering: Imaging \& Visualization}, publisher = {Taylor \& Francis}, address = {London}, issn = {2168-1171}, doi = {10.1080/21681163.2019.1670095}, year = {2019}, language = {en} } @article{FrotscherStaat2014, author = {Frotscher, Ralf and Staat, Manfred}, title = {Stresses produced by different textile mesh implants in a tissue equivalent}, series = {BioNanoMaterials}, volume = {15}, journal = {BioNanoMaterials}, number = {1-2}, publisher = {De Gruyter}, address = {Berlin}, issn = {2191-4672 (E-Journal); 2193-066X (E-Journal); 0011-8656 (Print); 1616-0177 (Print); 2193-0651 (Print)}, doi = {10.1515/bnm-2014-0003}, pages = {25 -- 30}, year = {2014}, abstract = {Two single-incision mini-slings used for treating urinary incontinence in women are compared with respect to the stresses they produce in their surrounding tissue. In an earlier paper we experimentally observed that these implants produce considerably different stress distributions in a muscle tissue equivalent. Here we perform 2D finite element analyses to compare the shear stresses and normal stresses in the tissue equivalent for the two meshes and to investigate their failure behavior. The results clearly show that the Gynecare TVT fails for increasing loads in a zipper-like manner because it gradually debonds from the surrounding tissue. Contrary to that, the tissue at the ends of the DynaMesh-SIS direct may rupture but only at higher loads. The simulation results are in good agreement with the experimental observations thus the computational model helps to interpret the experimental results and provides a tool for qualitative evaluation of mesh implants.}, language = {en} } @article{VuStaatTran2007, author = {Vu, Duc Khoi and Staat, Manfred and Tran, Ich Thinh}, title = {Analysis of pressure equipment by application of the primal-dual theory of shakedown}, series = {Communications in Numerical Methods in Engineering. 23 (2007), H. 3}, journal = {Communications in Numerical Methods in Engineering. 23 (2007), H. 3}, isbn = {1069-8299}, pages = {213 -- 225}, year = {2007}, language = {en} }