@article{KramerValeroChansonetal.2019, author = {Kramer, Matthias and Valero, Daniel and Chanson, Hubert and Bung, Daniel Bernhard}, title = {Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique}, series = {Experiments in Fluids}, volume = {60}, journal = {Experiments in Fluids}, publisher = {Springer}, address = {Berlin}, issn = {1432-1114}, doi = {10.1007/s00348-018-2650-9}, year = {2019}, language = {en} } @inproceedings{MerkensHebel2021, author = {Merkens, Torsten and Hebel, Christoph}, title = {Sharing mobility concepts - flexible, sustainable, smart}, series = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, booktitle = {Proceedings of the 1st UNITED - Southeast Asia Automotive Interest Group (SAIG) International Conference}, isbn = {978-3-902103-94-9}, pages = {43 -- 44}, year = {2021}, language = {en} } @article{ValeroVitiGualtieri2019, author = {Valero, Daniel and Viti, Nicolo and Gualtieri, Carlo}, title = {Numerical Simulation of Hydraulic Jumps. Part 1: Experimental Data for Modelling Performance Assessment}, series = {Water}, volume = {11}, journal = {Water}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w11010036}, pages = {Art. Nr. 36}, year = {2019}, language = {en} } @article{VitiValeroGualtieri2019, author = {Viti, Nicolo and Valero, Daniel and Gualtieri, Carlo}, title = {Numerical Simulation of Hydraulic Jumps. Part 2: Recent Results and Future Outlook}, series = {Water}, volume = {11}, journal = {Water}, number = {1}, issn = {2073-4441}, doi = {10.3390/w11010028}, pages = {Art. Nr. 28}, year = {2019}, language = {en} } @article{KerresGredigkHoffmannJatheetal.2020, author = {Kerres, Karsten and Gredigk-Hoffmann, Sylvia and Jathe, R{\"u}diger and Orlik, Stefan and Sariyildiz, Mustafa and Schmidt, Torsten and Sympher, Klaus-Jochen and Uhlenbroch, Adrian}, title = {Future approaches for sewer system condition assessment}, series = {Water Practice \& Technology}, journal = {Water Practice \& Technology}, number = {15 (2)}, publisher = {IWA Publishing}, address = {London}, issn = {1751-231X}, doi = {10.2166/wpt.2020.027}, pages = {386 -- 393}, year = {2020}, abstract = {Different analytical approaches exist to describe the structural substance or wear reserve of sewer systems. The aim is to convert engineering assessments of often complex defect patterns into computational algorithms and determine a substance class for a sewer section or manhole. This analytically determined information is essential for strategic rehabilitation planning processes up to network level, as it corresponds to the most appropriate rehabilitation type and can thus provide decision-making support. Current calculation methods differ clearly from each other in parts, so that substance classes determined by the different approaches are only partially comparable with each other. The objective of the German R\&D cooperation project 'SubKanS' is to develop a methodology for classifying the specific defect patterns resulting from the interaction of all the individual defects, and their severities and locations. The methodology takes into account the structural substance of sewer sections and manholes, based on real data and theoretical considerations analogous to the condition classification of individual defects. The result is a catalogue of defect patterns and characteristics, as well as associated structural substance classifications of sewer systems (substance classes). The methodology for sewer system substance classification is developed so that the classification of individual defects can be transferred into a substance class of the sewer section or manhole, eventually taking into account further information (e.g. pipe material, nominal diameter, etc.). The result is a validated methodology for automated sewer system substance classification.}, language = {en} } @article{Hoettges2017, author = {H{\"o}ttges, J{\"o}rg}, title = {QKan - Management of drainage system data with QGIS}, series = {Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings}, volume = {17}, journal = {Free and Open Source Software for Geospatial (FOSS4G) Conference Proceedings}, number = {Article 13}, pages = {95 -- 100}, year = {2017}, language = {en} } @article{KuhnhenneRegerPyschnyetal.2020, author = {Kuhnhenne, Markus and Reger, Vitali and Pyschny, Dominik and D{\"o}ring, Bernd}, title = {Influence of airtightness of steel sandwich panel joints on heat losses}, series = {E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020)}, volume = {172}, journal = {E3S Web of Conferences 12th Nordic Symposium on Building Physics (NSB 2020)}, number = {Art. 05008}, publisher = {EDP Sciences}, address = {Les Ulis}, doi = {10.1051/e3sconf/202017205008}, pages = {6}, year = {2020}, abstract = {Energy saving ordinances requires that buildings must be designed in such a way that the heat transfer surface including the joints is permanently air impermeable. The prefabricated roof and wall panels in lightweight steel constructions are airtight in the area of the steel covering layers. The sealing of the panel joints contributes to fulfil the comprehensive requirements for an airtight building envelope. To improve the airtightness of steel sandwich panels, additional sealing tapes can be installed in the panel joint. The influence of these sealing tapes was evaluated by measurements carried out by the RWTH Aachen University - Sustainable Metal Building Envelopes. Different installation situations were evaluated by carrying out airtightness tests for different joint distances. In addition, the influence on the heat transfer coefficient was also evaluated using the Finite Element Method (FEM). The combination of obtained air volume flow and transmission losses enables to create an "effective heat transfer coefficient" due to transmission and infiltration. This summarizes both effects in one value and is particularly helpful for approximate calculations on energy efficiency.}, language = {en} } @inproceedings{JockwerKleiberUibel2018, author = {Jockwer, R. and Kleiber, M. and Uibel, Thomas}, title = {Criteria for Evaluating the Simplification of Design Rules for Dowel-type Fasteners}, series = {International Network on Timber Engineering Research, INTER : proceedings, meeting 51, 10 - 13 August 2016, Tallinn, Estonia}, booktitle = {International Network on Timber Engineering Research, INTER : proceedings, meeting 51, 10 - 13 August 2016, Tallinn, Estonia}, editor = {G{\"o}rlacher, Rainer}, publisher = {Timber Scientific Publishing, KIT Holzbau und Baukonstruktionen}, address = {Karlsruhe}, pages = {461 -- 466}, year = {2018}, language = {en} } @techreport{SansomLawsonTuchoetal.2016, author = {Sansom, M. and Lawson, R.M. and Tucho, R. and Kendrick, C. and Ogden, R. and Resalati, S. and Garay, R. and D{\"o}ring, Bernd and Reger, V. and Gilbert, J. and Heikkinen, J. and Hemmila, K.}, title = {Building in active thermal mass into steel structures (BATIMASS) - EUR 28166EN}, publisher = {Publications Office of the European Union}, address = {Luxembourg}, organization = {European Commission}, isbn = {978-92-79-63176-4}, issn = {1831-9424}, doi = {10.2777/25999}, pages = {147 Seiten}, year = {2016}, abstract = {The main objective of the BATIMASS project was to address how the energy balance in relatively lightweight steel buildings can be improved by building in 'active thermal mass' (ATM) into the building fabric. This was achieved through concept design, dynamic thermal modelling and testing of a number of potentially viable systems and concepts. A significant programme of thermal simulation modelling was undertaken utilising the thermally equivalent slab (TES) concept to model the passive thermal capacity effect of profiled, composite metal floor decks. It is apparent from the modelling results that thermal mass is a highly complex phenomenon which is highly dependent upon building type, occupancy patterns, climate and many other aspects of the building design and servicing strategy. The ATM systems developed, both conceptually and for prototype testing, focussed on water-cooled composite slabs, the Cofradal floor system and the phase change material (PCM) Energain. In addition to laboratory testing of prototypes, whole building monitoring was undertaken at the Kubik building in Spain and the RWTH test building in Germany. Advanced thermal modelling was also undertaken to estimate the likely benefits of the ATM concept designs developed and for comparison with the test results. In addition to thermal testing, structural tests were conducted on composite floor specimens incorporating embedded water pipes. This Final Report presents the results of the activities carried out under this RFCS contract RFSR CT 2012 00033. The work carried out is reported in six major sections corresponding to the technical Work Packages of the project. Only summaries of the work carried out are provided in this report; all work undertaken is fully reported in the formal project deliverables.}, language = {en} } @techreport{LawsonBaddooVanieretal.2013, author = {Lawson, R.M. and Baddoo, N.R. and Vanier, G. and D{\"o}ring, Bernd and Kuhnhenne, M. and Nieminen, J. and Beguin, P. and Herbin, S. and Caroli, G. and Adetunji, I. and Kozlowski, A.}, title = {Renovation of buildings using steel technologies (Robust) - EUR 25335}, publisher = {Publications Office of the European Union}, address = {Luxembourg}, organization = {European Commission}, isbn = {978-92-79-24950-1}, issn = {1831-9424}, doi = {10.2777/97860}, pages = {134 Seiten}, year = {2013}, abstract = {Robust addresses the renovation and improvement of existing residential, industrial and commercial buildings using steel-based technologies, focusing on techniques such as over-cladding, over-roofing and roof-top extensions. Steel-intensive renovation techniques currently on the market were reviewed. Performance criteria were developed for over-cladding systems meeting current regulatory standards, with guidelines on how to achieve appropriate levels of air-tightness.}, language = {en} }