@article{Reissel1992, author = {Reißel, Martin}, title = {On a transmission boundary-value problem for the time-harmonic Maxwell equations without displacement currents / Martin Reissel}, pages = {19 S.}, year = {1992}, language = {en} } @article{Reissel1993, author = {Reißel, Martin}, title = {On a Transmission Boundary Value Problem for the Time-Harmonic Maxwell Equations without Displacement Currents / Martin Reissel}, series = {SIAM Journal on Mathematical Analysis. 24 (1993), H. 6}, journal = {SIAM Journal on Mathematical Analysis. 24 (1993), H. 6}, isbn = {0036-1410}, pages = {1440 -- 1457}, year = {1993}, language = {en} } @article{HirschfeldLustfeldReisseletal.2010, author = {Hirschfeld, J. A. and Lustfeld, H. and Reißel, Martin and Steffen, B.}, title = {A novel scheme for precise diagnostics and effective stabilization of currents in a fuel cell stack}, series = {International Journal of Energy Research. 34 (2010), H. 3}, journal = {International Journal of Energy Research. 34 (2010), H. 3}, isbn = {0363-907X}, pages = {293 -- 301}, year = {2010}, language = {en} } @article{HirschfeldLustfeldReisseletal.2010, author = {Hirschfeld, J. A. and Lustfeld, H. and Reißel, Martin and Steffen, B.}, title = {Tomographic diagnostics of current distributions in a fuel cell stack}, series = {International Journal of Energy Research}, volume = {34}, journal = {International Journal of Energy Research}, number = {3}, isbn = {0363-907X}, pages = {284 -- 292}, year = {2010}, language = {en} } @article{Reissel1993, author = {Reißel, Martin}, title = {Numerische Berechnung elektromagnetischer Felder in Turbogeneratoren}, series = {ZAMM - Zeitschrift f{\"u}r Angewandte Mathematik und Mechanik. 73 (1993), H. 7/8}, journal = {ZAMM - Zeitschrift f{\"u}r Angewandte Mathematik und Mechanik. 73 (1993), H. 7/8}, isbn = {0044-2267}, pages = {T677 -- T680}, year = {1993}, language = {de} } @article{ReisselHirschfeldLustfeldetal.2009, author = {Reißel, Martin and Hirschfeld, J. A. and Lustfeld, H. and Steffen, B.}, title = {Magnetotomography and Electric Currents in a Fuel Cell / Lustfeld, H. ; Reißel, M. ; Steffen, B.}, series = {Fuel Cells. 9 (2009), H. 4}, journal = {Fuel Cells. 9 (2009), H. 4}, publisher = {Wiley-VCH}, address = {Weinheim}, isbn = {1615-6854}, pages = {474 -- 481}, year = {2009}, language = {en} } @article{ArtmannZang1990, author = {Artmann, Gerhard and Zang, Werner}, title = {Vollautomatische Messung rheologischer Parameter roter Blutzellen}, series = {Biomedizinische Technik / Biomedical Engineering}, volume = {35}, journal = {Biomedizinische Technik / Biomedical Engineering}, number = {S3}, issn = {0013-5585}, pages = {94 -- 96}, year = {1990}, language = {de} } @article{ItabashiKosakaMiyamotoetal.2013, author = {Itabashi, Akinori and Kosaka, Naoki and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {High-speed chemical imaging system based on front-side-illuminated LAPS}, series = {Sensors and actuators B: Chemical}, volume = {182}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077}, doi = {10.1016/j.snb.2013.03.016}, pages = {315 -- 321}, year = {2013}, abstract = {The chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the spatial distribution of specific ions on the sensing surface. The conventional chemical imaging system based on the light-addressable potentiometric sensor (LAPS), however, required a long time to obtain a chemical image, due to the slow mechanical scan of a single light beam. For high-speed imaging, a plurality of light beams modulated at different frequencies can be employed to measure the ion concentrations simultaneously at different locations on the sensor plate by frequency division multiplex (FDM). However, the conventional measurement geometry of back-side illumination limited the bandwidth of the modulation frequency required for FDM measurement, because of the low-pass filtering characteristics of carrier diffusion in the Si substrate. In this study, a high-speed chemical imaging system based on front-side-illuminated LAPS was developed, which achieved high-speed spatiotemporal recording of pH change at a rate of 70 frames per second.}, language = {en} } @article{IkenAhlbornGerlachetal.2013, author = {Iken, Heiko and Ahlborn, K. and Gerlach, F. and Vonau, W. and Zander, W. and Schubert, J. and Sch{\"o}ning, Michael Josef}, title = {Development of redox glasses and subsequent processing by means of pulsed laser deposition for realizing silicon-based thin-film sensors}, series = {Electrochimica acta}, journal = {Electrochimica acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3859 (E-Journal); 0013-4686 (Print)}, pages = {Available online 30.8.2013}, year = {2013}, language = {en} } @article{BandodkarMolinnusMirzaetal.2014, author = {Bandodkar, Amay J. and Molinnus, Denise and Mirza, Omar and Guinovart, Tomas and Windmiller, Joshua R. and Valdes-Ramirez, Gabriela and Andrade, Francisco J. and Sch{\"o}ning, Michael Josef and Wang, Joseph}, title = {Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring}, series = {Biosensors and bioelectronics}, volume = {54}, journal = {Biosensors and bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4235 (E-Journal); 0956-5663 (Print)}, doi = {10.1016/j.bios.2013.11.039}, pages = {603 -- 609}, year = {2014}, abstract = {This article describes the fabrication, characterization and application of an epidermal temporary-transfer tattoo-based potentiometric sensor, coupled with a miniaturized wearable wireless transceiver, for real-time monitoring of sodium in the human perspiration. Sodium excreted during perspiration is an excellent marker for electrolyte imbalance and provides valuable information regarding an individual's physical and mental wellbeing. The realization of the new skin-worn non-invasive tattoo-like sensing device has been realized by amalgamating several state-of-the-art thick film, laser printing, solid-state potentiometry, fluidics and wireless technologies. The resulting tattoo-based potentiometric sodium sensor displays a rapid near-Nernstian response with negligible carryover effects, and good resiliency against various mechanical deformations experienced by the human epidermis. On-body testing of the tattoo sensor coupled to a wireless transceiver during exercise activity demonstrated its ability to continuously monitor sweat sodium dynamics. The real-time sweat sodium concentration was transmitted wirelessly via a body-worn transceiver from the sodium tattoo sensor to a notebook while the subjects perspired on a stationary cycle. The favorable analytical performance along with the wearable nature of the wireless transceiver makes the new epidermal potentiometric sensing system attractive for continuous monitoring the sodium dynamics in human perspiration during diverse activities relevant to the healthcare, fitness, military, healthcare and skin-care domains.}, language = {en} }