@inproceedings{PuetzBaierBrauneretal.2022, author = {P{\"u}tz, Sebastian and Baier, Ralph and Brauner, Philipp and Brillowski, Florian and Dammers, Hannah and Liehner, Luca and Mertens, Alexander and Rodemann, Niklas and Schneider, Sebastian and Schollemann, Alexander and Steuer-Dankert, Linda and Vervier, Luisa and Gries, Thomas and Leicht-Scholten, Carmen and Nagel, Saskia K. and Piller, Frank T. and Schuh, G{\"u}nther and Ziefle, Martina and Nitsch, Verena}, title = {An interdisciplinary view on humane interfaces for digital shadows in the internet of production}, series = {2022 15th International Conference on Human System Interaction (HSI)}, booktitle = {2022 15th International Conference on Human System Interaction (HSI)}, publisher = {IEEE}, isbn = {978-1-6654-6823-7 (Print)}, issn = {2158-2246 (Print)}, doi = {10.1109/HSI55341.2022.9869467}, pages = {8 Seiten}, year = {2022}, abstract = {Digital shadows play a central role for the next generation industrial internet, also known as Internet of Production (IoP). However, prior research has not considered systematically how human actors interact with digital shadows, shaping their potential for success. To address this research gap, we assembled an interdisciplinary team of authors from diverse areas of human-centered research to propose and discuss design and research recommendations for the implementation of industrial user interfaces for digital shadows, as they are currently conceptualized for the IoP. Based on the four use cases of decision support systems, knowledge sharing in global production networks, human-robot collaboration, and monitoring employee workload, we derive recommendations for interface design and enhancing workers' capabilities. This analysis is extended by introducing requirements from the higher-level perspectives of governance and organization.}, language = {en} } @inproceedings{ChurilovDumovaJovanoskaButenweg2013, author = {Churilov, Sergej and Dumova-Jovanoska, Elena and Butenweg, Christoph}, title = {Seismic verification of existing masonry buildings and strengthening with reinforced concrete jackets}, series = {Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013)}, booktitle = {Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013)}, editor = {Adam, Christoph and Heuer, Rudolf and Lenhardt, Wolfgang and Schranz, Christian}, isbn = {978-3-902749-04-8}, year = {2013}, abstract = {A methodology for assessment, seismic verification and strengthening of existing masonry buildings is presented in this paper. The verification is performed using a calculation model calibrated with the results from ambient vibration measurements. The calibrated model serves as an input for a deformation-based verification procedure based on the Capacity Spectrum Method (CSM). The bearing capacity of the building is calculated from experimental capacity curves of the individual walls idealized with bilinear elastic-perfectly plastic curves. The experimental capacity curves were obtained from in-plane cyclic loading tests on unreinforced and strengthened masonry walls with reinforced concrete jackets. The seismic action is compared with the load-bearing capacity of the building considering non-linear material behavior with its post-peak capacity. The application of the CSM to masonry buildings and the influence of a traditional strengthening method are demonstrated on the example of a public school building in Skopje, Macedonia.}, language = {en} } @inproceedings{ButenwegNorda2013, author = {Butenweg, Christoph and Norda, Hannah}, title = {Nonlinear analysis of masonry structures according to Eurocode 8}, series = {Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013)}, booktitle = {Proceedings - Vienna Congress on Recent Advances in Earthquake Engineering and Structural Dynamics 2013 (VEESD 2013)}, editor = {Adam, Christoph and Heuer, Rudolf and Lenhardt, Wolfgang and Schranz, Christian}, isbn = {978-3-902749-04-8}, year = {2013}, language = {en} } @inproceedings{AltayButenwegKlinkel2013, author = {Altay, Okyay and Butenweg, Christoph and Klinkel, Sven}, title = {Vibration control of slender structures by semi-active tuned liquid column dampers}, series = {Conference of the ASCE Engineering Mechanics Institute , Evanston, IL , USA , EMI 2013 , 2013-08-04 - 2013-08-07}, booktitle = {Conference of the ASCE Engineering Mechanics Institute , Evanston, IL , USA , EMI 2013 , 2013-08-04 - 2013-08-07}, pages = {1 Seite}, year = {2013}, language = {en} } @inproceedings{AltayButenwegKlinkel2014, author = {Altay, Okyay and Butenweg, Christoph and Klinkel, Sven}, title = {Vibration mitigation of wind turbine towers by a new semiactive Tuned Liquid Column Damper}, series = {6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain}, booktitle = {6. Word Congress on Structural Control and Monitoring, 15 - 17 July, 2014 Barcelona,Spain}, year = {2014}, language = {en} } @inproceedings{TaddeiLozanaMicheletal.2015, author = {Taddei, Francesca and Lozana, Lara and Michel, Philipp and Butenweg, Christoph and Klinkel, Sven}, title = {Practical recommendations for the foundation design of onshore wind turbines including soil-structure interaction}, series = {5th International Conference on Computational Methods in Structural , Hersonissos, Greece Dynamics and Earthquake Engineering, COMPDYN 2015, 25.05.2015-27.05.2015, Hersonissos, Greece.}, booktitle = {5th International Conference on Computational Methods in Structural , Hersonissos, Greece Dynamics and Earthquake Engineering, COMPDYN 2015, 25.05.2015-27.05.2015, Hersonissos, Greece.}, editor = {Papadrakakis, Manolis and Papadrakakis, M. and Papadopoulos, V. and Plevris, V.}, year = {2015}, language = {en} } @inproceedings{ButenwegMarinkovićPaveseetal.2021, author = {Butenweg, Christoph and Marinković, Marko and Pavese, Alberto and Lanese, Igor and Hoffmeister, Benno and Pinkawa, Marius and Vulcu, Mihai-Cristian and Bursi, Oreste and Nardin, Chiara and Paolacci, Fabrizio and Quinci, Gianluca and Fragiadakis, Michalis and Weber, Felix and Huber, Peter and Renault, Philippe and G{\"u}ndel, Max and Dyke, Shirley and Ciucci, M. and Marino, A.}, title = {Seismic performance of multi-component systems in special risk industrial facilities}, series = {17. World Conference on Earthquake Engineering , Sendai , Japan , 17WCEE , 2021-09-27 - 2021-10-02}, booktitle = {17. World Conference on Earthquake Engineering , Sendai , Japan , 17WCEE , 2021-09-27 - 2021-10-02}, year = {2021}, abstract = {Past earthquakes demonstrated the high vulnerability of industrial facilities equipped with complex process technologies leading to serious damage of the process equipment and multiple and simultaneous release of hazardous substances in industrial facilities. Nevertheless, the design of industrial plants is inadequately described in recent codes and guidelines, as they do not consider the dynamic interaction between the structure and the installations and thus the effect of seismic response of the installations on the response of the structure and vice versa. The current code-based approach for the seismic design of industrial facilities is considered not enough for ensure proper safety conditions against exceptional event entailing loss of content and related consequences. Accordingly, SPIF project (Seismic Performance of Multi- Component Systems in Special Risk Industrial Facilities) was proposed within the framework of the European H2020 - SERA funding scheme (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The objective of the SPIF project is the investigation of the seismic behavior of a representative industrial structure equipped with complex process technology by means of shaking table tests. The test structure is a three-story moment resisting steel frame with vertical and horizontal vessels and cabinets, arranged on the three levels and connected by pipes. The dynamic behavior of the test structure and installations is investigated with and without base isolation. Furthermore, both firmly anchored and isolated components are taken into account to compare their dynamic behavior and interactions with each other. Artificial and synthetic ground motions are applied to study the seismic response at different PGA levels. After each test, dynamic identification measurements are carried out to characterize the system condition. The contribution presents the numerical simulations to calibrate the tests on the prototype, the experimental setup of the investigated structure and installations, selected measurement data and finally describes preliminary experimental results.}, language = {en} } @inproceedings{GoemmelFrauenrathOttenetal.2010, author = {G{\"o}mmel, Andreas and Frauenrath, Tobias and Otten, Mario and Niendorf, Thoralf and Butenweg, Christoph}, title = {In-vivo measurements of vocal fold geometry using Magnetic Resonance Imaging}, series = {Fortschritte der Akustik - DAGA 2010 36. Jahrestagung f{\"u}r Akustik, 15. bis 18. M{\"a}rz 2010 in Berlin}, booktitle = {Fortschritte der Akustik - DAGA 2010 36. Jahrestagung f{\"u}r Akustik, 15. bis 18. M{\"a}rz 2010 in Berlin}, editor = {M{\"o}ser, Michael and Schulte-Fortkamp, Brgitte and Ochmann, Martin}, publisher = {Deutsche Gesellschaft f{\"u}r Akustik}, address = {Berlin}, isbn = {978-3-9808659-8-2}, year = {2010}, language = {de} } @article{KahmannRauschPluemeretal.2022, author = {Kahmann, Stephanie L. and Rausch, Valentin and Pl{\"u}mer, Jonathan and M{\"u}ller, Lars P. and Pieper, Martin and Wegmann, Kilian}, title = {The automized fracture edge detection and generation of three-dimensional fracture probability heat maps}, series = {Medical Engineering \& Physics}, volume = {2022}, journal = {Medical Engineering \& Physics}, number = {110}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, pages = {7 Seiten}, year = {2022}, abstract = {With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1-2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further.}, language = {en} } @article{SchwagerFleschSchwarzboezletal.2022, author = {Schwager, Christian and Flesch, Robert and Schwarzb{\"o}zl, Peter and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e}}, title = {Advanced two phase flow model for transient molten salt receiver system simulation}, series = {Solar Energy}, volume = {232}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X (print)}, doi = {10.1016/j.solener.2021.12.065}, pages = {362 -- 375}, year = {2022}, abstract = {In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed.}, language = {en} }