@inproceedings{KohlFreyerKraemeretal.2023, author = {Kohl, Philipp and Freyer, Nils and Kr{\"a}mer, Yoka and Werth, Henri and Wolf, Steffen and Kraft, Bodo and Meinecke, Matthias and Z{\"u}ndorf, Albert}, title = {ALE: a simulation-based active learning evaluation framework for the parameter-driven comparison of query strategies for NLP}, series = {Deep Learning Theory and Applications}, booktitle = {Deep Learning Theory and Applications}, editor = {Conte, Donatello and Fred, Ana and Gusikhin, Oleg and Sansone, Carlo}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-39058-6 (Print)}, doi = {10.1007/978-3-031-39059-3_16}, pages = {235 -- 253}, year = {2023}, abstract = {Supervised machine learning and deep learning require a large amount of labeled data, which data scientists obtain in a manual, and time-consuming annotation process. To mitigate this challenge, Active Learning (AL) proposes promising data points to annotators they annotate next instead of a subsequent or random sample. This method is supposed to save annotation effort while maintaining model performance. However, practitioners face many AL strategies for different tasks and need an empirical basis to choose between them. Surveys categorize AL strategies into taxonomies without performance indications. Presentations of novel AL strategies compare the performance to a small subset of strategies. Our contribution addresses the empirical basis by introducing a reproducible active learning evaluation (ALE) framework for the comparative evaluation of AL strategies in NLP. The framework allows the implementation of AL strategies with low effort and a fair data-driven comparison through defining and tracking experiment parameters (e.g., initial dataset size, number of data points per query step, and the budget). ALE helps practitioners to make more informed decisions, and researchers can focus on developing new, effective AL strategies and deriving best practices for specific use cases. With best practices, practitioners can lower their annotation costs. We present a case study to illustrate how to use the framework.}, language = {en} } @article{WaldvogelFreylerHelmetal.2023, author = {Waldvogel, Janice and Freyler, Kathrin and Helm, Michael and Monti, Elena and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco V. and Ritzmann, Ramona and Albracht, Kirsten}, title = {Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks}, series = {Journal of Applied Physiology}, volume = {134}, journal = {Journal of Applied Physiology}, number = {1}, publisher = {American Physiological Society}, address = {Bethesda, Md.}, issn = {1522-1601 (Onlineausgabe)}, doi = {10.1152/japplphysiol.00279.2022}, pages = {190 -- 202}, year = {2023}, abstract = {This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.}, language = {en} } @article{HeieisBoeckerD'Angeloetal.2023, author = {Heieis, Jule and B{\"o}cker, Jonas and D'Angelo, Olfa and Mittag, Uwe and Albracht, Kirsten and Sch{\"o}nau, Eckhard and Meyer, Andreas and Voigtmann, Thomas and Rittweger, J{\"o}rn}, title = {Curvature of gastrocnemius muscle fascicles as function of muscle-tendon complex length and contraction in humans}, series = {Physiological Reports}, volume = {11}, journal = {Physiological Reports}, number = {11}, publisher = {Wiley}, issn = {2051-817X}, doi = {10.14814/phy2.15739}, pages = {e15739, Seite 1-11}, year = {2023}, abstract = {It has been shown that muscle fascicle curvature increases with increasing contraction level and decreasing muscle-tendon complex length. The analyses were done with limited examination windows concerning contraction level, muscle-tendon complex length, and/or intramuscular position of ultrasound imaging. With this study we aimed to investigate the correlation between fascicle arching and contraction, muscle-tendon complex length and their associated architectural parameters in gastrocnemius muscles to develop hypotheses concerning the fundamental mechanism of fascicle curving. Twelve participants were tested in five different positions (90°/105°*, 90°/90°*, 135°/90°*, 170°/90°*, and 170°/75°*; *knee/ankle angle). They performed isometric contractions at four different contraction levels (5\%, 25\%, 50\%, and 75\% of maximum voluntary contraction) in each position. Panoramic ultrasound images of gastrocnemius muscles were collected at rest and during constant contraction. Aponeuroses and fascicles were tracked in all ultrasound images and the parameters fascicle curvature, muscle-tendon complex strain, contraction level, pennation angle, fascicle length, fascicle strain, intramuscular position, sex and age group were analyzed by linear mixed effect models. Mean fascicle curvature of the medial gastrocnemius increased with contraction level (+5 m-1 from 0\% to 100\%; p = 0.006). Muscle-tendon complex length had no significant impact on mean fascicle curvature. Mean pennation angle (2.2 m-1 per 10°; p < 0.001), inverse mean fascicle length (20 m-1 per cm-1; p = 0.003), and mean fascicle strain (-0.07 m-1 per +10\%; p = 0.004) correlated with mean fascicle curvature. Evidence has also been found for intermuscular, intramuscular, and sex-specific intramuscular differences of fascicle curving. Pennation angle and the inverse fascicle length show the highest predictive capacities for fascicle curving. Due to the strong correlations between pennation angle and fascicle curvature and the intramuscular pattern of curving we suggest for future studies to examine correlations between fascicle curvature and intramuscular fluid pressure.}, language = {en} } @inproceedings{KloeserBuesgenKohletal.2023, author = {Kl{\"o}ser, Lars and B{\"u}sgen, Andr{\´e} and Kohl, Philipp and Kraft, Bodo and Z{\"u}ndorf, Albert}, title = {Explaining relation classification models with semantic extents}, series = {Deep Learning Theory and Applications}, booktitle = {Deep Learning Theory and Applications}, editor = {Conte, Donatello and Fred, Ana and Gusikhin, Oleg and Sansone, Carlo}, publisher = {Springer}, address = {Cham}, isbn = {978-3-031-39058-6 (Print)}, doi = {10.1007/978-3-031-39059-3_13}, pages = {189 -- 208}, year = {2023}, abstract = {In recent years, the development of large pretrained language models, such as BERT and GPT, significantly improved information extraction systems on various tasks, including relation classification. State-of-the-art systems are highly accurate on scientific benchmarks. A lack of explainability is currently a complicating factor in many real-world applications. Comprehensible systems are necessary to prevent biased, counterintuitive, or harmful decisions. We introduce semantic extents, a concept to analyze decision patterns for the relation classification task. Semantic extents are the most influential parts of texts concerning classification decisions. Our definition allows similar procedures to determine semantic extents for humans and models. We provide an annotation tool and a software framework to determine semantic extents for humans and models conveniently and reproducibly. Comparing both reveals that models tend to learn shortcut patterns from data. These patterns are hard to detect with current interpretability methods, such as input reductions. Our approach can help detect and eliminate spurious decision patterns during model development. Semantic extents can increase the reliability and security of natural language processing systems. Semantic extents are an essential step in enabling applications in critical areas like healthcare or finance. Moreover, our work opens new research directions for developing methods to explain deep learning models.}, language = {en} } @techreport{GoellBraunsteinAlbracht2021, author = {G{\"o}ll, Fabian and Braunstein, Bj{\"o}rn and Albracht, Kirsten}, title = {Lernende roboterassistierte Systeme f{\"u}r das neuromuskul{\"a}re Training - RoSylerNT; Teilvorhaben: Entwicklung eines neuromuskuloskelettalen Modells als Basis f{\"u}r die Interaktionsf{\"a}higkeiten autonomer Assistenzsysteme}, publisher = {Deutsche Sporthochschule K{\"o}ln}, address = {K{\"o}ln}, doi = {10.2314/KXP:1855318741}, pages = {14 Seiten}, year = {2021}, language = {de} } @article{OezsoyluAliaziziWagneretal.2024, author = {{\"O}zsoylu, Dua and Aliazizi, Fereshteh and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Template bacteria-free fabrication of surface imprinted polymer-based biosensor for E. coli detection using photolithographic mimics: Hacking bacterial adhesion}, series = {Biosensors and Bioelectronics}, volume = {261}, journal = {Biosensors and Bioelectronics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4235 (eISSN)}, doi = {10.1016/j.bios.2024.116491}, pages = {11 Seiten}, year = {2024}, abstract = {As one class of molecular imprinted polymers (MIPs), surface imprinted polymer (SIP)-based biosensors show great potential in direct whole-bacteria detection. Micro-contact imprinting, that involves stamping the template bacteria immobilized on a substrate into a pre-polymerized polymer matrix, is the most straightforward and prominent method to obtain SIP-based biosensors. However, the major drawbacks of the method arise from the requirement for fresh template bacteria and often non-reproducible bacteria distribution on the stamp substrate. Herein, we developed a positive master stamp containing photolithographic mimics of the template bacteria (E. coli) enabling reproducible fabrication of biomimetic SIP-based biosensors without the need for the "real" bacteria cells. By using atomic force and scanning electron microscopy imaging techniques, respectively, the E. coli-capturing ability of the SIP samples was tested, and compared with non-imprinted polymer (NIP)-based samples and control SIP samples, in which the cavity geometry does not match with E. coli cells. It was revealed that the presence of the biomimetic E. coli imprints with a specifically designed geometry increases the sensor E. coli-capturing ability by an "imprinting factor" of about 3. These findings show the importance of geometry-guided physical recognition in bacterial detection using SIP-based biosensors. In addition, this imprinting strategy was employed to interdigitated electrodes and QCM (quartz crystal microbalance) chips. E. coli detection performance of the sensors was demonstrated with electrochemical impedance spectroscopy (EIS) and QCM measurements with dissipation monitoring technique (QCM-D).}, language = {en} } @article{KetelhutBrueggeGoelletal.2020, author = {Ketelhut, Maike and Br{\"u}gge, G. M. and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Adaptive iterative learning control of an industrial robot during neuromuscular training}, series = {IFAC PapersOnLine}, volume = {53}, journal = {IFAC PapersOnLine}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2020.12.741}, pages = {16468 -- 16475}, year = {2020}, abstract = {To prevent the reduction of muscle mass and loss of strength coming along with the human aging process, regular training with e.g. a leg press is suitable. However, the risk of training-induced injuries requires the continuous monitoring and controlling of the forces applied to the musculoskeletal system as well as the velocity along the motion trajectory and the range of motion. In this paper, an adaptive norm-optimal iterative learning control algorithm to minimize the knee joint loadings during the leg extension training with an industrial robot is proposed. The response of the algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee and compared to the results of a higher-order iterative learning control algorithm, a robust iterative learning control and a recently proposed conventional norm-optimal iterative learning control algorithm. Although significant improvements in performance are made compared to the conventional norm-optimal iterative learning control algorithm with a small learning factor, for the developed approach as well as the robust iterative learning control algorithm small steady state errors occur.}, language = {en} } @article{KetelhutKolditzGoelletal.2019, author = {Ketelhut, Maike and Kolditz, Melanie and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Admittance control of an industrial robot during resistance training}, series = {IFAC-PapersOnLine}, volume = {52}, journal = {IFAC-PapersOnLine}, number = {19}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2019.12.102}, pages = {223 -- 228}, year = {2019}, abstract = {Neuromuscular strength training of the leg extensor muscles plays an important role in the rehabilitation and prevention of age and wealth related diseases. In this paper, we focus on the design and implementation of a Cartesian admittance control scheme for isotonic training, i.e. leg extension and flexion against a predefined weight. For preliminary testing and validation of the designed algorithm an experimental research and development platform consisting of an industrial robot and a force plate mounted at its end-effector has been used. Linear, diagonal and arbitrary two-dimensional motion trajectories with different weights for the leg extension and flexion part are applied. The proposed algorithm is easily adaptable to trajectories consisting of arbitrary six-dimensional poses and allows the implementation of individualized trajectories.}, language = {en} } @inproceedings{KetelhutGoellBraunsteinetal.2019, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Iterative learning control of an industrial robot for neuromuscular training}, series = {2019 IEEE Conference on Control Technology and Applications}, booktitle = {2019 IEEE Conference on Control Technology and Applications}, publisher = {IEEE}, address = {New York}, isbn = {978-1-7281-2767-5 (ePub)}, doi = {10.1109/CCTA.2019.8920659}, pages = {7 Seiten}, year = {2019}, abstract = {Effective training requires high muscle forces potentially leading to training-induced injuries. Thus, continuous monitoring and controlling of the loadings applied to the musculoskeletal system along the motion trajectory is required. In this paper, a norm-optimal iterative learning control algorithm for the robot-assisted training is developed. The algorithm aims at minimizing the external knee joint moment, which is commonly used to quantify the loading of the medial compartment. To estimate the external knee joint moment, a musculoskeletal lower extremity model is implemented in OpenSim and coupled with a model of an industrial robot and a force plate mounted at its end-effector. The algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee. The results show that the algorithm is able to minimize the external knee joint moment in all three cases and converges after less than seven iterations.}, language = {en} } @misc{BlottnerHastermannMuckeltetal.2019, author = {Blottner, Dieter and Hastermann, Maria and Muckelt, Paul and Albracht, Kirsten and Schoenrock, Britt and Salanova, Michele and Warner, Martin and Gunga, Hans-Christian and Stokes, Maria}, title = {MYOTONES - Inflight muscle health status monitoring during long-duration space missions onboard the International Space Station: a single case study}, series = {IAC Papers Archive}, journal = {IAC Papers Archive}, publisher = {Pergamon}, address = {Oxford}, issn = {00741795}, pages = {2 Seiten}, year = {2019}, abstract = {The MYOTONES experiment is the first to monitor changes in the basic biomechanical properties (tone, elasticity and stiffness) of the resting human myofascial system due to microgravity with a oninvasive, portable device on board the ISS. The MyotonPRO device applies several brief mechanical stimuli to the surface of the skin, and the natural oscillation signals of the tissue beneath are detected and computed by the MyotonPRO. Thus, an objective, quick and easy determination of the state of the underlying tissue is possible. Two preflight, four inflight and four post flight measurements were performed on a male astronaut using the same 10 measurement points (MP) for each session. MPs were located on the plantar fascia, Achilles tendon, M. soleus, M. gastrocnemius, M. multifidus, M. splenius capitis, M. deltoideus anterior, M. rectus femoris, infrapatellar tendon, M. tibialis anterior. Subcutaneous tissues thickness above the MPs was measured using ultrasound imaging. Magnetic resonance images (MRI) of lower limb muscles and functional tests were also performed pre- and postflight. Our first measurements on board the ISS confirmed increased tone and stiffness of the lumbar multifidus muscle, an important trunk stabilizer, dysfunction of which is known to be associated with back pain. Furthermore, reduced tone and stiffness of Achilles tendon and plantar fascia were observed inflight vs. preflight, confirming previous findings from terrestrial analog studies and parabolic flights. Unexpectedly, the deltoid showed negative inflight changes in tone and stiffness, and increased elasticity, suggesting a potential risk of muscle atrophy in longer spaceflight that should be addressed by adequate inflight countermeasure protocols. Most values from limb and back MPS showed deflected patterns (in either directions) from inflight shortly after the re-entry phase on the landing day and one week later. Most parameter values then normalized to baseline after 3 weeks likely due to 1G re-adaptation and possible outcome of the reconditioning protocol. No major changes in subcutaneous tissues thickness above the MPs were found inflight vs preflight, suggesting no bias (i.e., fluid shift, extreme tissue thickening or loss). Pre- and postflight MRI and functional tests showed negligible changes in calf muscle size, power and force, which is likely due to training effects from current inflight exercise protocols. The MYOTONES experiment is currently ongoing to collect data from further crew members. The potential impact of this research is to better understand the effects of microgravity and countermeasures over the time course of an ISS mission cycle. This will enable exercise countermeasures to be tailored}, language = {en} }