@inproceedings{EngelThieringerTippkoetter2016, author = {Engel, Mareike and Thieringer, Julia and Tippk{\"o}tter, Nils}, title = {Linking bioprocess engineering and electrochemistry for sustainable biofuel production}, series = {Young Researchers Symposium, YRS 2016. Proceedings}, booktitle = {Young Researchers Symposium, YRS 2016. Proceedings}, publisher = {Fraunhofer Verlag}, address = {Karlsruhe}, pages = {49 -- 53}, year = {2016}, abstract = {Electromicrobial engineering is an emerging, highly interdisciplinary research area linking bioprocesses with electrochemistry. In this work, microbial electrosynthesis (MES) of biobutanol is carried out during acetone-butanol-ethanol (ABE) fermentations with Clostridium acetobutylicum. A constant electric potential of -600mV (vs. Ag/AgCl) with simultaneous addition of the soluble redox mediator neutral red is used in order to study the electron transfer between the working electrode and the bacterial cells. The results show an earlier initiation of solvent production for all fermentations with applied potential compared to the conventional ABE fermentation. The f inal butanol concentration can be more than doubled by the application of a negative potential combined with addition of neutral red. Moreover a higher biofilm formation on the working electrode compared to control cultivations has been observed. In contrast to previous studies, our results also indicate that direct electron transfer (DET) might be possible with C. acetobutylicum. The presented results make microbial butanol production economically attractive and therefore support the development of sustainable production processes in the chemical industry aspired by the "Centre for resource-efficient chemistry and raw material change" as well as the the project "NanoKat" working on nanostructured catalysts in Kaiserslautern.}, language = {en} } @misc{LindelGreiserWaxmanetal.2012, author = {Lindel, Tomasz Dawid and Greiser, Andreas and Waxman, Patrick and Dietterle, Martin and Seifert, Frank and Fontius, Ulrich and Renz, Wolfgang and Dieringer, Matthias A. and Frauenrath, Tobias and Schulz-Menger, Jeanette and Niendorf, Thoralf and Ittermann, Bernd}, title = {Cardiac CINE MRI at 7 T using a transmit array}, series = {2012 ISMRM Annual Meeting Proceedings}, journal = {2012 ISMRM Annual Meeting Proceedings}, issn = {1545-4428}, year = {2012}, abstract = {With its need for high SNR and short acquisition times, Cardiac MRI (CMR) is an intriguing target application for ultrahigh field MRI. Due to the sheer size of the upper torso, however, the known RF issues of 7T MRI are also most prominent in CMR. Recent years brought substantial progress but the full potential of the ultrahigh field for CMR is yet to be exploited. Parallel transmission (pTx) is a promising approach in this context and several groups have already reported B1 shimming for 7T CMR. In such a static pTx application amplitudes and phases of all Tx channels are adjusted individually but otherwise imaging techniques established in current clinical practice 1.5 T and 3 T are applied. More advanced forms of pTx as spatially selective excitation (SSE) using Transmit SENSE promise additional benefits like faster imaging with reduced fields of view or improved SAR control. SSE requires the full dynamic capabilities of pTx, however, and for the majority of today's implemented pTx hardware the internal synchronization of the Tx array does not easily permit external triggering as needed for CMR. Here we report a software solution to this problem and demonstrate the feasibility of CINE CMR at 7 T using a Tx array.}, language = {en} } @article{HueningHeuermannWacheetal.2018, author = {H{\"u}ning, Felix and Heuermann, Holger and Wache, Franz-Josef and Jajo, Rami Audisho}, title = {A new wireless sensor interface using dual-mode radio}, series = {Journal of Sensors and Sensor Systems : JSSS}, volume = {Volume 7}, journal = {Journal of Sensors and Sensor Systems : JSSS}, number = {2}, publisher = {Copernicus Publ.}, address = {G{\"o}ttingen}, doi = {10.5194/jsss-7-507-2018}, pages = {507 -- 515}, year = {2018}, abstract = {The integration of sensors is one of the major tasks in embedded, control and "internet of things" (IoT) applications. For the integration mainly digital interfaces are used, starting from rather simple pulse-width modulation (PWM) interface to more complex interfaces like CAN (Controller Area Network). Even though these interfaces are tethered by definition, a wireless realization is highly welcome in many applications to reduce cable and connector cost, increase the flexibility and realize new emerging applications like wireless control systems. Currently used wireless solutions like Bluetooth, WirelessHART or IO-Link Wireless use dedicated communication standards and corresponding higher protocol layers to realize the wireless communication. Due to the complexity of the communication and the protocol handling, additional latency and jitter are introduced to the data communication that can meet the requirements for many applications. Even though tunnelling of other bus data like CAN data is generally also possible the latency and jitter prevent the tunnelling from being transparent for the bus system. Therefore a new basic technology based on dual-mode radio is used to realize a wireless communication on the physical layer only, enabling a reliable and real-time data transfer. As this system operates on the physical layer it is independent of any higher layers of the OSI (open systems interconnection) model. Hence it can be used for several different communication systems to replace the tethered physical layer. A prototype is developed and tested for real-time wireless PWM, SENT (single-edge nibble transmission) and CAN data transfer with very low latency and jitter.}, language = {en} } @misc{BraunKrafftTippkoetter2022, author = {Braun, Lena and Krafft, Simone and Tippk{\"o}tter, Nils}, title = {Combined supercritical carbon dioxide extraction and chromatography of the algae fatty linoleic and linolenic acid}, series = {Chemie Ingenieur Technik}, volume = {94}, journal = {Chemie Ingenieur Technik}, number = {9}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0009-286X}, doi = {10.1002/cite.202255308}, pages = {1304}, year = {2022}, abstract = {A method for the integrated extraction and separation of fatty acids from algae using supercritical CO2 is presented. Desmodesmus obliquus and Chlorella sorokiniana were used as algae. First, a method for chromatographic separation of fatty acids of different degrees of saturation was established and optimized. Then, an integrated method for supercritical extraction was developed for both algal species. It was also verified whether prior cell disruption was beneficial for extraction. In developing the method for chromatographic separation, statistical experimental design was used to determine the optimal parameter settings. The methanol content in the mobile phase proved to be the most important parameter for successful separation of the three unsaturated fatty acids oleic acid, linoleic acid, and linolenic acid. Supercritical extraction with dried algae showed that about four times more fatty acids can be extracted from C. sorokiniana relative to the dry mass used.}, language = {en} } @inproceedings{BragardRongeDeDoncker2011, author = {Bragard, Michael and Ronge, C. and De Doncker, R. W.}, title = {Sandwich design of high-power thyristor based devices with integrated MOSFET structure}, series = {Proceedings of the 2011 - 14th - European Conference on Power Electronics and Applications (EPE 2011) : Aug. 30, 2011 - Sept. 1, 2011, Birmingham, United Kingdom}, booktitle = {Proceedings of the 2011 - 14th - European Conference on Power Electronics and Applications (EPE 2011) : Aug. 30, 2011 - Sept. 1, 2011, Birmingham, United Kingdom}, publisher = {IEEE}, address = {Piscataway, NJ}, isbn = {978-1-61284-167-0 (Print)}, year = {2011}, language = {en} } @article{HaegerJolmesOyenetal.2024, author = {Haeger, Gerrit and Jolmes, Tristan and Oyen, Sven and Jaeger, Karl-Erich and Bongaerts, Johannes and Sch{\"o}rken, Ulrich and Siegert, Petra}, title = {Novel recombinant aminoacylase from Paraburkholderia monticola capable of N-acyl-amino acid synthesis}, series = {Applied Microbiology and Biotechnology}, journal = {Applied Microbiology and Biotechnology}, number = {108}, publisher = {Springer}, address = {Berlin}, issn = {1432-0614}, doi = {10.1007/s00253-023-12868-8}, pages = {14 Seiten}, year = {2024}, abstract = {N-Acyl-amino acids can act as mild biobased surfactants, which are used, e.g., in baby shampoos. However, their chemical synthesis needs acyl chlorides and does not meet sustainability criteria. Thus, the identification of biocatalysts to develop greener synthesis routes is desirable. We describe a novel aminoacylase from Paraburkholderia monticola DSM 100849 (PmAcy) which was identified, cloned, and evaluated for its N-acyl-amino acid synthesis potential. Soluble protein was obtained by expression in lactose autoinduction medium and co-expression of molecular chaperones GroEL/S. Strep-tag affinity purification enriched the enzyme 16-fold and yielded 15 mg pure enzyme from 100 mL of culture. Biochemical characterization revealed that PmAcy possesses beneficial traits for industrial application like high temperature and pH-stability. A heat activation of PmAcy was observed upon incubation at temperatures up to 80 °C. Hydrolytic activity of PmAcy was detected with several N-acyl-amino acids as substrates and exhibited the highest conversion rate of 773 U/mg with N-lauroyl-L-alanine at 75 °C. The enzyme preferred long-chain acyl-amino-acids and displayed hardly any activity with acetyl-amino acids. PmAcy was also capable of N-acyl-amino acid synthesis with good conversion rates. The best synthesis results were obtained with the cationic L-amino acids L-arginine and L-lysine as well as with L-leucine and L-phenylalanine. Exemplarily, L-phenylalanine was acylated with fatty acids of chain lengths from C8 to C18 with conversion rates of up to 75\%. N-lauroyl-L-phenylalanine was purified by precipitation, and the structure of the reaction product was verified by LC-MS and NMR.}, language = {en} } @article{LuftLuftArntz2023, author = {Luft, Angela and Luft, Nils and Arntz, Kristian}, title = {A basic description logic for service-oriented architecture in factory planning and operational control in the age of industry 4.0}, series = {Applied Sciences}, volume = {2023}, journal = {Applied Sciences}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app13137610}, pages = {23 Seiten}, year = {2023}, abstract = {Manufacturing companies across multiple industries face an increasingly dynamic and unpredictable environment. This development can be seen on both the market and supply side. To respond to these challenges, manufacturing companies must implement smart manufacturing systems and become more flexible and agile. The flexibility in operational planning regarding the scheduling and sequencing of customer orders needs to be increased and new structures must be implemented in manufacturing systems' fundamental design as they constitute much of the operational flexibility available. To this end, smart and more flexible solutions for production planning and control (PPC) are developed. However, scheduling or sequencing is often only considered isolated in a predefined stable environment. Moreover, their orientation on the fundamental logic of the existing IT solutions and their applicability in a dynamic environment is limited. This paper presents a conceptual model for a task-based description logic that can be applied to factory planning, technology planning, and operational control. By using service-oriented architectures, the goal is to generate smart manufacturing systems. The logic is designed to allow for easy and automated maintenance. It is compatible with the existing resource and process allocation logic across operational and strategic factory and production planning.}, language = {en} } @incollection{DachwaldUlamecBiele2013, author = {Dachwald, Bernd and Ulamec, Stephan and Biele, Jens}, title = {Clean in situ subsurface exploration of icy environments in the solar system}, series = {Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28)}, booktitle = {Habitability of other planets and satellites. - (Cellular origin, life in extreme habitats and astrobiology ; 28)}, publisher = {Springer}, address = {Dordrecht}, isbn = {978-94-007-6545-0 (Druckausgabe)}, pages = {367 -- 397}, year = {2013}, abstract = {"To assess the habitability of the icy environments in the solar system, for example, on Mars, Europa, and Enceladus, the scientific analysis of material embedded in or underneath their ice layers is very important. We consider self-steering robotic ice melting probes to be the best method to cleanly access these environments, that is, in compliance with planetary protection standards. The required technologies are currently developed and tested."}, language = {en} } @misc{WiegnerVolkerMainzetal.2022, author = {Wiegner, J. and Volker, H. and Mainz, F. and Backes, A. and L{\"o}ken, M. and H{\"u}ning, Felix}, title = {Wiegand-Effect-Powered Wireless IT Sensor Node}, year = {2022}, abstract = {With the growing interest in small distributed sensors for the "Internet of Things", more attention is being paid to energy harvesting techologies. Reducing or eliminating the need for external power sources or batteries make devices more self-sufficient, more reliable, and reduces maintenance requirements. The Wiegand effect is a proven technology for harvesting small amounts of electrical power from mechanical motion.}, language = {en} } @misc{EcclestonDrummondMiddletonetal.2020, author = {Eccleston, Paul and Drummond, Rachel and Middleton, Kevin and Bishop, Georgia and Caldwell, Andrew and Desjonqueres, Lucile and Tosh, Ian and Cann, Nick and Crook, Martin and Hills, Matthew and Pearson, Chris and Simpson, Caroline and Stamper, Richard and Tinetti, Giovanna and Pascale, Enzo and Swain, Mark and Holmes, Warren A. and Wong, Andre and Puig, Ludovic and Pilbratt, G{\"o}ran and Linder, Martin and Boudin, Nathalie and Ertel, Hanno and Gambicorti, Lisa and Halain, Jean-Philippe and Pace, Emanuele and Vilardell, Francesc and G{\´o}mez, Jos{\´e} M. and Colom{\´e}, Josep and Amiaux, J{\´e}r{\^o}me and Cara, Christophe and Berthe, Michel and Moreau, Vincent and Morgante, Gianluca and Malaguti, Giuseppe and Alonso, Gustavo and {\´A}lvarez, Javier P. and Ollivier, Marc and Philippon, Anne and Hellin, Marie-Laure and Roose, Steve and Frericks, Martin and Krijger, Matthijs and Rataj, Miroslaw and Wawer, Piotr and Skup, Konrad and Sobiecki, Mateusz and Christian Jessen, Niels and M{\o}ller Pedersen, S{\o}ren and Hargrave, Peter and Griffin, Matt and Ottensamer, Roland and Hunt, Thomas and Rust, Duncan and Saleh, Aymen and Winter, Berend and Focardi, Mauro and Da Deppo, Vania and Zuppella, Paola and Czupalla, Markus}, title = {The ARIEL payload: A technical overview}, series = {Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave}, volume = {11443}, journal = {Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave}, editor = {Lystrup, Makenzie and Perrin, Marshall D. and Batalha, Natalie and Siegler, Nicholas and Tong, Edward C.}, publisher = {SPIE}, address = {Washington}, doi = {10.1117/12.2561478}, pages = {114430Z}, year = {2020}, abstract = {The Atmospheric Remote-Sensing Infrared Exoplanet Large-survey, ARIEL, has been selected to be the next (M4) medium class space mission in the ESA Cosmic Vision programme. From launch in 2028, and during the following 4 years of operation, ARIEL will perform precise spectroscopy of the atmospheres of ~1000 known transiting exoplanets using its metre-class telescope. A three-band photometer and three spectrometers cover the 0.5 µm to 7.8 µm region of the electromagnetic spectrum. This paper gives an overview of the mission payload, including the telescope assembly, the FGS (Fine Guidance System) - which provides both pointing information to the spacecraft and scientific photometry and low-resolution spectrometer data, the ARIEL InfraRed Spectrometer (AIRS), and other payload infrastructure such as the warm electronics, structures and cryogenic cooling systems.}, language = {en} }