@inproceedings{SiegertIdingBaumannetal.2000, author = {Siegert, Petra and Iding, Hans and Baumann, Martin and McLeish, Michael J. and Kenyon, George L. and Pohl, Martina}, title = {Broadening of the substrate spectra of two ThDP-dependent decarboxylases using site-directed-mutagenesis}, series = {Proceedings of the 4th International Congress on Biochemical Engineering : 17 and 18 February 2000, Stuttgart}, booktitle = {Proceedings of the 4th International Congress on Biochemical Engineering : 17 and 18 February 2000, Stuttgart}, organization = {International Congress on Biochemical Engineering <4, 2000, Stuttgart>}, isbn = {3-8167-5570-4}, pages = {38 -- 42}, year = {2000}, language = {en} } @article{IdingDuennwaldGreineretal.2000, author = {Iding, Hans and D{\"u}nnwald, Thomas and Greiner, Lasse and Liese, Andreas and M{\"u}ller, Michael and Siegert, Petra and Gr{\"o}tzinger, Joachim and Demir, Ayhan S. and Pohl, Martina}, title = {Benzoylformate Decarboxylase from Pseudomonas putida as Stable Catalyst for the Synthesis of Chiral 2-Hydroxy Ketones}, series = {Chemistry - a European journal}, volume = {Vol. 6}, journal = {Chemistry - a European journal}, number = {Iss. 8}, issn = {1521-3765 (E-Journal); 0947-6539 (Print)}, pages = {1483 -- 1495}, year = {2000}, language = {en} } @article{BrueckSorgerGligorevicetal.2000, author = {Br{\"u}ck, Stefan and Sorger, Ulrich and Gligorevic, Snjezana and Stolte, Norbert}, title = {Interleaving for outer convolutional codes in DS-CDMA systems}, series = {IEEE transactions on communications}, volume = {Vol. 48}, journal = {IEEE transactions on communications}, number = {Iss. 7}, issn = {0090-6778}, pages = {1100 -- 1107}, year = {2000}, language = {en} } @article{BodeSchlakeIberetal.2000, author = {Bode, J{\"u}rgen and Schlake, Thomas and Iber, Michaela and Sch{\"u}beler, Dirk and Seibler, Jost and Snezhkov, Evgeney and Nikolaev, Lev}, title = {The transgeneticist's toolbox: novel methods for the targeted modification of eukaryotic genomes}, series = {Biological Chemistry}, volume = {381}, journal = {Biological Chemistry}, number = {9-10}, issn = {1431-6730}, doi = {10.1515/BC.2000.103}, pages = {801 -- 813}, year = {2000}, language = {en} } @article{Ritz2000, author = {Ritz, Thomas}, title = {Information Channels}, series = {Information Technology. Nr. 52 (2000), H. 08. Mai 2000}, journal = {Information Technology. Nr. 52 (2000), H. 08. Mai 2000}, pages = {15 -- 15}, year = {2000}, language = {en} } @book{WolfFoltzKillich2000, author = {Wolf, Martin R. and Foltz, Christian and Killich, S.}, title = {K3 User Guide}, publisher = {RWTH}, address = {Aachen}, pages = {1 -- 13}, year = {2000}, language = {en} } @inproceedings{StaatHeitzer2000, author = {Staat, Manfred and Heitzer, Michael}, title = {Direct static FEM approach to limit and shakedown analysis}, year = {2000}, abstract = {Safety and reliability of structures may be assessed indirectly by stress distributions. Limit and shakedown theorems are simplified but exact methods of plasticity that provide safety factors directly in the loading space. These theorems may be used for a direct definition of the limit state function for failure by plastic collapse or by inadaptation. In a FEM formulation the limit state function is obtained from a nonlinear optimization problem. This direct approach reduces considerably the necessary knowledge of uncertain technological input data, the computing time, and the numerical error. Moreover, the direct way leads to highly effective and precise reliability analyses. The theorems are implemented into a general purpose FEM program in a way capable of large-scale analysis.}, subject = {Einspielen }, language = {en} } @article{WolfFoltzSchlicketal.2000, author = {Wolf, Martin R. and Foltz, Christian and Schlick, Christopher and Luczak, Holger}, title = {Empirical Investigation of a workspace model for Chemical engineers / Wolf, Martin ; Foltz, Christian ; Schlick, Christopher ; Luczak, Holger}, series = {Proceedings of the Human Factors and Ergonomics Society Annual Meeting July 2000. 44 (2000), H. 6}, journal = {Proceedings of the Human Factors and Ergonomics Society Annual Meeting July 2000. 44 (2000), H. 6}, publisher = {-}, pages = {612 -- 615}, year = {2000}, language = {en} } @article{Wolf2000, author = {Wolf, Martin R.}, title = {Groupware related task design}, series = {ACM SIGGROUP Bulletin}, volume = {21}, journal = {ACM SIGGROUP Bulletin}, number = {2}, issn = {2372-7403}, doi = {10.1145/605660.605662}, pages = {5 -- 8}, year = {2000}, abstract = {his report summarizes the results of a workshop on Groupware related task design which took place at the International Conference on Supporting Group Work Group'99, Arizona, from 14 th to 17 th November 1999. The workshop was addressed to people from different viewpoints, backgrounds, and domains: - Researchers dealing with questions of task analysis and task modeling for Groupware application from an academic point of view. They may contribute modelbased design approaches or theoretically oriented work - Practitioners with experience in the design and everyday use of groupware systems. They might refer to the practical side of the topic: "real" tasks, "real" problems, "real" users, etc.}, language = {en} } @article{Staat2000, author = {Staat, Manfred}, title = {Direct FEM Limit and Shakedown Analysis with Uncertain Data}, year = {2000}, abstract = {The structural reliability with respect to plastic collapse or to inadaptation is formulated on the basis of the lower bound limit and shakedown theorems. A direct definition of the limit state function is achieved which permits the use of the highly effective first order reliability methods (FORM) is achieved. The theorems are implemented into a general purpose FEM program in a way capable of large-scale analysis. The limit state function and its gradient are obtained from a mathematical optimization problem. This direct approach reduces considerably the necessary knowledge of uncertain technological input data, the computing time, and the numerical error, leading to highly effective and precise reliability analyses.}, subject = {Finite-Elemente-Methode}, language = {en} }