@inproceedings{PirovanoSeefeldtDachwaldetal.2015, author = {Pirovano, Laura and Seefeldt, Patric and Dachwald, Bernd and Noomen, Ron}, title = {Attitude and Orbital Dynamics Modeling for an Uncontrolled Solar-Sail Experiment in Low-Earth Orbit}, series = {25th International Symposium on Spaceflight Dynamics, 2015, Munich, Germany}, booktitle = {25th International Symposium on Spaceflight Dynamics, 2015, Munich, Germany}, pages = {15 S.}, year = {2015}, language = {en} } @inproceedings{FingerBraunBil2019, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Engine Failure Constraints on the Initial Sizing of Hybrid-Electric GA Aircraft}, series = {AIAA Scitech 2019 Forum}, booktitle = {AIAA Scitech 2019 Forum}, doi = {10.2514/6.2019-1812}, year = {2019}, language = {en} } @inproceedings{JeanPierrePBaqueBillietal.2018, author = {Jean-Pierre P., de Vera and Baque, Mickael and Billi, Daniela and B{\"o}ttger, Ute and Bulat, Sergey and Czupalla, Markus and Dachwald, Bernd and de la Torre, Rosa and Elsaesser, Andreas and Foucher, Fr{\´e}d{\´e}ric and Korsitzky, Hartmut and Kozyrovska, Natalia and L{\"a}ufer, Andreas and Moeller, Ralf and Olsson-Francis, Karen and Onofri, Silvano and Sommer, Stefan and Wagner, Dirk and Westall, Frances}, title = {The search for life on Mars and in the Solar System - strategies, logistics and infrastructures}, series = {69th International Astronautical Congress (IAC)}, booktitle = {69th International Astronautical Congress (IAC)}, pages = {1 -- 8}, year = {2018}, abstract = {The question "Are we alone in the Universe?" is perhaps the most fundamental one that affects mankind. How can we address the search for life in our Solar System? Mars, Enceladus and Europa are the focus of the search for life outside the terrestrial biosphere. While it is more likely to find remnants of life (fossils of extinct life) on Mars because of its past short time window of the surface habitability, it is probably more likely to find traces of extant life on the icy moons and ocean worlds of Jupiter and Saturn. Nevertheless, even on Mars there could still be a chance to find extant life in niches near to the surface or in just discovered subglacial lakes beneath the South Pole ice cap. Here, the different approaches for the detection of traces of life in the form of biosignatures including pre-biotic molecules will be presented. We will outline the required infrastructure for this enterprise and give examples of future mission concepts to investigate the presence of life on other planets and moons. Finally, we will provide suggestions on methods, techniques, operations and strategies for preparation and realization of future life detection missions.}, language = {en} } @inproceedings{DachwaldKahleWie2006, author = {Dachwald, Bernd and Kahle, Ralph and Wie, Bong}, title = {Solar sail Kinetic Energy Impactor (KEI) mission design tradeoffs for impacting and deflecting asteroid 99942 Apophis}, series = {AIAA/AAS Astrodynamics Specialist Conference and Exhibit}, booktitle = {AIAA/AAS Astrodynamics Specialist Conference and Exhibit}, doi = {10.2514/6.2006-6178}, pages = {1 -- 20}, year = {2006}, abstract = {Near-Earth asteroid 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several so-called gravitational keyholes during its 2029-encounter. Several pre-2029-deflection scenarios to prevent Apophis from doing this have been investigated so far. Because the keyholes are less than 1 km in size, a pre-2029 kinetic impact is clearly the best option because it requires only a small change in Apophis' orbit to nudge it out of a keyhole. A single solar sail Kinetic Energy Impactor (KEI) spacecraft that impacts Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages at about 0.75 AU would be a feasible option to do this. The spacecraft consists of a 160 m x 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. In this paper, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, solar sail Kinetic Energy Impactor (KEI) spacecraft are still a feasible option to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value. In this paper, we elaborate potential pre- and post-2029 KEI impact scenarios for a launch in 2020, and investigate tradeoffs between different mission parameters.}, language = {en} } @inproceedings{BaaderKellerLehmannetal.2019, author = {Baader, Fabian and Keller, Denis and Lehmann, Raphael and Gerber, Lukas and Reiswich, Martin and Dachwald, Bernd and F{\"o}rstner, Roger}, title = {Operating melting probes for ice penetration under sublimation conditions and in reduced gravity on a sounding rocket}, series = {Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research}, booktitle = {Proceedings of the 24th ESA Symposium on European Rocket and Balloon Programmes and related Research}, issn = {0379-6566}, pages = {8 Seiten}, year = {2019}, language = {en} } @inproceedings{BorggraefeDachwald2010, author = {Borggr{\"a}fe, Andreas and Dachwald, Bernd}, title = {Mission performance evaluation for solar sails using a refined SRP force model with variable optical coefficients}, series = {2nd International Symposium on Solar Sailing}, booktitle = {2nd International Symposium on Solar Sailing}, pages = {1 -- 6}, year = {2010}, abstract = {Solar sails provide ignificant advantages over other low-thrust propulsion systems because they produce thrust by the momentum exchange from solar radiation pressure (SRP) and thus do not consume any propellant.The force exerted on a very thin sail foil basically depends on the light incidence angle. Several analytical SRP force models that describe the SRP force acting on the sail have been established since the 1970s. All the widely used models use constant optical force coefficients of the reflecting sail material. In 2006,MENGALI et al. proposed a refined SRP force model that takes into account the dependancy of the force coefficients on the light incident angle,the sail's distance from the sun (and thus the sail emperature) and the surface roughness of the sail material [1]. In this paper, the refined SRP force model is compared to the previous ones in order to identify the potential impact of the new model on the predicted capabilities of solar sails in performing low-cost interplanetary space missions. All force models have been implemented within InTrance, a global low-thrust trajectory optimization software utilizing evolutionary neurocontrol [2]. Two interplanetary rendezvous missions, to Mercury and the near-Earth asteroid 1996FG3, are investigated. Two solar sail performances in terms of characteristic acceleration are examined for both scenarios, 0.2 mm/s2 and 0.5 mm/s2, termed "low" and "medium" sail performance. In case of the refined SRP model, three different values of surface roughness are chosen, h = 0 nm, 10 nm and 25 nm. The results show that the refined SRP force model yields shorter transfer times than the standard model.}, language = {en} } @inproceedings{SchoutetensDachwaldHeiligers2021, author = {Schoutetens, Frederic and Dachwald, Bernd and Heiligers, Jeannette}, title = {Optimisation of photon-sail trajectories in the alpha-centauri system using evolutionary neurocontrol}, series = {8th ICATT 2021}, booktitle = {8th ICATT 2021}, pages = {1 -- 15}, year = {2021}, abstract = {With the increased interest for interstellar exploration after the discovery of exoplanets and the proposal by Breakthrough Starshot, this paper investigates the optimisation of photon-sail trajectories in Alpha Centauri. The prime objective is to find the optimal steering strategy for a photonic sail to get captured around one of the stars after a minimum-time transfer from Earth. By extending the idea of the Breakthrough Starshot project with a deceleration phase upon arrival, the mission's scientific yield will be increased. As a secondary objective, transfer trajectories between the stars and orbit-raising manoeuvres to explore the habitable zones of the stars are investigated. All trajectories are optimised for minimum time of flight using the trajectory optimisation software InTrance. Depending on the sail technology, interstellar travel times of 77.6-18,790 years can be achieved, which presents an average improvement of 30\% with respect to previous work. Still, significant technological development is required to reach and be captured in the Alpha-Centauri system in less than a century. Therefore, a fly-through mission arguably remains the only option for a first exploratory mission to Alpha Centauri, but the enticing results obtained in this work provide perspective for future long-residence missions to our closest neighbouring star system.}, language = {en} } @inproceedings{KapoorBollerGiljohannetal.2010, author = {Kapoor, Hrshi and Boller, Christian and Giljohann, Sebastian and Braun, Carsten}, title = {Strategies for structural health monitoring implementation potential assessment in aircraft operational life extension considerations}, series = {2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany}, booktitle = {2nd International Symposium on NDT in Aerospace : November 22-24, 2010 Hamburg, Germany}, publisher = {Dt. Gesellschaft f{\"u}r Zerst{\"o}rungsfreie Pr{\"u}fung}, address = {Berlin}, organization = {Deutsche Gesellschaft f{\"u}r Zerst{\"o}rungsfreie Pr{\"u}fung}, isbn = {978-3-940283-28-3}, pages = {9}, year = {2010}, language = {en} } @inproceedings{LoebSchartnerDachwaldetal.2011, author = {Loeb, Horst W. and Schartner, Karl-Heinz and Dachwald, Bernd and Ohndorf, Andreas and Seboldt, Wolfgang}, title = {An Interstellar - Heliopause mission using a combination of solar/radioisotope electric propulsion}, series = {Presented at the 32nd International Electric Propulsion Conference}, booktitle = {Presented at the 32nd International Electric Propulsion Conference}, pages = {1 -- 7}, year = {2011}, abstract = {There is common agreement within the scientific community that in order to understand our local galactic environment it will be necessary to send a spacecraft into the region beyond the solar wind termination shock. Considering distances of 200 AU for a new mission, one needs a spacecraft travelling at a speed of close to 10 AU/yr in order to keep the mission duration in the range of less than 25 yrs, a transfer time postulated by ESA.Two propulsion options for the mission have been proposed and discussed so far: the solar sail propulsion and the ballistic/radioisotope electric propulsion. As a further alternative, we here investigate a combination of solar-electric propulsion and radioisotope-electric propulsion. The solar-electric propulsion stage consists of six 22 cm diameter "RIT-22"ion thrusters working with a high specific impulse of 7377 s corresponding to a positive grid voltage of 5 kV. Solar power of 53 kW BOM is provided by a light-weight solar array. The REP-stage consists of four space-proven 10 cm diameter "RIT-10" ion thrusters that will be operating one after the other for 9 yrs in total. Four advanced radioisotope generators provide 648 W at BOM. The scientific instrument package is oriented at earlier studies. For its mass and electric power requirement 35 kg and 35 W are assessed, respectively. Optimized trajectory calculations, treated in a separate contribution, are based on our "InTrance" method.The program yields a burn out of the REP stage in a distance of 79.6 AU for a usage of 154 kg of Xe propellant. With a C3 = 45,1 (km/s)2 a heliocentric probe velocity of 10 AU/yr is reached at this distance, provided a close Jupiter gravity assist adds a velocity increment of 2.7 AU/yr. A transfer time of 23.8 yrs results for this scenario requiring about 450 kg Xe for the SEP stage, jettisoned at 3 AU. We interpret the SEP/REP propulsion as a competing alternative to solar sail and ballistic/REP propulsion. Omiting a Jupiter fly-by even allows more launch flexibility, leaving the mission duration in the range of the ESA specification.}, language = {en} } @inproceedings{QuitterMarinoBauschat2019, author = {Quitter, Julius and Marino, Matthew and Bauschat, J.-Michael}, title = {Highly Non-Planar Aircraft Configurations: Estimation of Flight Mechanical Derivatives Using Low-Order Methods}, series = {Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, DLRK 2019. Darmstadt, Germany}, pages = {10 Seiten}, year = {2019}, language = {en} } @inproceedings{GoettenFinger2019, author = {G{\"o}tten, Falk and Finger, Felix}, title = {Conceptual Design of a Modular 150 kg Vertical Take-off and Landing Unmanned Aerial Vehicle}, series = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, booktitle = {Deutscher Luft- und Raumfahrtkongress - DLRK 2019. Darmstadt, Germany}, pages = {1 -- 10}, year = {2019}, language = {en} } @inproceedings{FunkeKeinzBoerneretal.2016, author = {Funke, Harald and Keinz, Jan and B{\"o}rner, S. and Hendrick, P. and Elsing, R.}, title = {Testing and analysis of the impact on engine cycle parameters and control system modifications using hydrogen or methane as fuel in an industrial gas turbine}, series = {Progress in propulsion physics ; Volume 8}, booktitle = {Progress in propulsion physics ; Volume 8}, publisher = {EDP Sciences}, address = {o.O.}, organization = {European Conference for Aerospace Sciences <2013, M{\"u}nchen>}, isbn = {978-5-94588-191-4}, doi = {10.1051/eucass/201608409}, pages = {409 -- 426}, year = {2016}, language = {en} } @inproceedings{SchulzeMuehleisenFeyerl2018, author = {Schulze, Sven and M{\"u}hleisen, M. and Feyerl, G{\"u}nter}, title = {Adaptive energy management strategy for a heavy-duty truck with a P2-hybrid topology}, series = {18. Internationales Stuttgarter Symposium. Proceedings}, booktitle = {18. Internationales Stuttgarter Symposium. Proceedings}, publisher = {Springer Vieweg}, address = {Wiesbaden}, doi = {10.1007/978-3-658-21194-3}, pages = {75 -- 89}, year = {2018}, language = {en} } @inproceedings{HorikawaOkadaUtoetal.2019, author = {Horikawa, Atsushi and Okada, Kunio and Uto, Takahiro and Uchiyama, Yuta and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Application of Low NOx Micro-mix Hydrogen Combustion to 2MW Class Industrial Gas Turbine Combustor}, series = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, booktitle = {Proceedings of International Gas Turbine Congress 2019 Tokyo, November 17-22, 2019, Tokyo, Japan}, isbn = {978-4-89111-010-9}, pages = {1 -- 6}, year = {2019}, language = {en} } @inproceedings{GeibenGoettenHavermann2020, author = {Geiben, Benedikt and G{\"o}tten, Falk and Havermann, Marc}, title = {Aerodynamic analysis of a winged sub-orbital spaceplane}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/530170}, year = {2020}, abstract = {This paper primarily presents an aerodynamic CFD analysis of a winged spaceplane geometry based on the Japanese Space Walker proposal. StarCCM was used to calculate aerodynamic coefficients for a typical space flight trajectory including super-, trans- and subsonic Mach numbers and two angles of attack. Since the solution of the RANS equations in such supersonic flight regimes is still computationally expensive, inviscid Euler simulations can principally lead to a significant reduction in computational effort. The impact on accuracy of aerodynamic properties is further analysed by comparing both methods for different flight regimes up to a Mach number of 4.}, language = {en} } @inproceedings{AdamsLosekammCzupalla2020, author = {Adams, Moritz and Losekamm, Martin J. and Czupalla, Markus}, title = {Development of the Thermal Control System for the RadMap Telescope Experiment on the International Space Station}, series = {International Conference on Environmental Systems}, booktitle = {International Conference on Environmental Systems}, pages = {1 -- 10}, year = {2020}, language = {en} } @inproceedings{WuKemper2016, author = {Wu, Ziyi and Kemper, Hans}, title = {The optimal 48 V - battery pack for a specific load profile of a heavy duty vehicle}, series = {8. Internationale Fachtagung Kraftwerk Batterie : 26. - 27. April 2016, M{\"u}nster, Deutschland}, booktitle = {8. Internationale Fachtagung Kraftwerk Batterie : 26. - 27. April 2016, M{\"u}nster, Deutschland}, year = {2016}, language = {en} } @inproceedings{SchirraBauschatWatmuff2014, author = {Schirra, Julian and Bauschat, J.-Michael and Watmuff, J.H.}, title = {Accurate induced drag prediction for highly non-planar lifting systems}, series = {19th Australasian Fluid Mechanics Conference : 8.-11. Dezember 2014, Melbourne, Australia}, booktitle = {19th Australasian Fluid Mechanics Conference : 8.-11. Dezember 2014, Melbourne, Australia}, pages = {4 Seiten}, year = {2014}, abstract = {The impact of wake model effects is investigated for two highly non-planar lifting systems. Dependent on the geometrical arrangement of the configuration, the wake model shape is found to considerably affect the estimation. Particularly at higher angles of attack, an accurate estimation based on the common linear wake model approaches is involved.}, language = {en} } @inproceedings{NeuJanserKhatibietal.2016, author = {Neu, Eugen and Janser, Frank and Khatibi, Akbar A. and Orifici, Adrian C.}, title = {In-flight vibration-based structural health monitoring of aircraft wings}, series = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, booktitle = {30th Congress of the internatonal council of the aeronautical sciences : 25.-30. September 2016, Daejeon, Korea}, pages = {10 Seiten}, year = {2016}, abstract = {This work presents a methodology for automated damage-sensitive feature extraction and anomaly detection under multivariate operational variability for in-flight assessment of wings. The method uses a passive excitation approach, i. e. without the need for artificial actuation. The modal system properties (natural frequencies and damping ratios) are used as damage-sensitive features. Special emphasis is placed on the use of Fiber Bragg Grating (FBG) sensing technology and the consideration of Operational and Environmental Variability (OEV). Measurements from a wind tunnel investigation with a composite cantilever equipped with FBG and piezoelectric sensors are used to successfully detect an impact damage. In addition, the feasibility of damage localisation and severity estimation is evaluated based on the coupling found between damageand OEV-induced feature changes.}, language = {en} } @inproceedings{BarnatBosse2016, author = {Barnat, Miriam and Bosse, Elke}, title = {The challenge of creating meta-inferences: Combining data representing institutional and individual perspectives on first-year support in higher education}, series = {9th Conference on Social Science Methodology of the International Sociological Association, Leicester, UK}, booktitle = {9th Conference on Social Science Methodology of the International Sociological Association, Leicester, UK}, pages = {1 -- 20}, year = {2016}, language = {en} } @inproceedings{KleineKallweitMichauxetal.2016, author = {Kleine, Harald and Kallweit, Stephan and Michaux, Frank and Havermann, Marc and Olivier, Herbert}, title = {PIV Measurement of Shock Wave Diffraction}, series = {18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2016, Lissabon}, booktitle = {18th International Symposium on Applications of Laser Techniques to Fluid Mechanics, 2016, Lissabon}, pages = {1 -- 14}, year = {2016}, language = {en} } @inproceedings{SchleupenEngemannBagherietal.2016, author = {Schleupen, Josef and Engemann, Heiko and Bagheri, Mohsen and Kallweit, Stephan}, title = {The potential of SMART climbing robot combined with a weatherproof cabin for rotor blade maintenance}, series = {17th European Conference on Composite Materials - ECCM, Munich, Germany}, booktitle = {17th European Conference on Composite Materials - ECCM, Munich, Germany}, pages = {1 -- 8}, year = {2016}, language = {en} } @inproceedings{FunkeKeinzHendrick2017, author = {Funke, Harald and Keinz, Jan and Hendrick, P.}, title = {Experimental Evaluation of the Pollutant and Noise Emissions of the GTCP 36-300 Gas Turbine Operated with Kerosene and a Low NOX Micromix Hydrogen Combustor}, series = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017}, booktitle = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017}, organization = {7th European Conference for Aeronautics and Space Sciences, EUCASS 2017-125, Milan, Italy, July 2017}, doi = {10.13009/EUCASS2017-125}, pages = {10 Seiten}, year = {2017}, language = {en} } @inproceedings{KreyerMuellerEsch2020, author = {Kreyer, J{\"o}rg and M{\"u}ller, Marvin and Esch, Thomas}, title = {A Map-Based Model for the Determination of Fuel Consumption for Internal Combustion Engines as a Function of Flight Altitude}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/490162}, pages = {13 Seiten}, year = {2020}, abstract = {In addition to very high safety and reliability requirements, the design of internal combustion engines (ICE) in aviation focuses on economic efficiency. The objective must be to design the aircraft powertrain optimized for a specific flight mission with respect to fuel consumption and specific engine power. Against this background, expert tools provide valuable decision-making assistance for the customer. In this paper, a mathematical calculation model for the fuel consumption of aircraft ICE is presented. This model enables the derivation of fuel consumption maps for different engine configurations. Depending on the flight conditions and based on these maps, the current and the integrated fuel consumption for freely definable flight emissions is calculated. For that purpose, an interpolation method is used, that has been optimized for accuracy and calculation time. The mission boundary conditions flight altitude and power requirement of the ICE form the basis for this calculation. The mathematical fuel consumption model is embedded in a parent program. This parent program presents the simulated fuel consumption by means of an example flight mission for a representative airplane. The focus of the work is therefore on reproducing exact consumption data for flight operations. By use of the empirical approaches according to Gagg-Farrar [1] the power and fuel consumption as a function of the flight altitude are determined. To substantiate this approaches, a 1-D ICE model based on the multi-physical simulation tool GT-Suite® has been created. This 1-D engine model offers the possibility to analyze the filling and gas change processes, the internal combustion as well as heat and friction losses for an ICE under altitude environmental conditions. Performance measurements on a dynamometer at sea level for a naturally aspirated ICE with a displacement of 1211 ccm used in an aviation aircraft has been done to validate the 1-D ICE model. To check the plausibility of the empirical approaches with respect to the fuel consumption and performance adjustment for the flight altitude an analysis of the ICE efficiency chain of the 1-D engine model is done. In addition, a comparison of literature and manufacturer data with the simulation results is presented.}, language = {en} } @inproceedings{EnglhardWeberArent2021, author = {Englhard, Markus and Weber, Tobias and Arent, Jan-Christoph}, title = {Efficiency enhancement for CFRP-Prepregautoclave manufacturing by means of simulation-assisted loading optimization}, series = {Proceedings of SAMPE Europe Conference 2021}, booktitle = {Proceedings of SAMPE Europe Conference 2021}, pages = {8 Seiten}, year = {2021}, abstract = {A new method for improved autoclave loading within the restrictive framework of helicopter manufacturing is proposed. It is derived from experimental and numerical studies of the curing process and aims at optimizing tooling positions in the autoclave for fast and homogeneous heat-up. The mold positioning is based on two sets of information. The thermal properties of the molds, which can be determined via semi-empirical thermal simulation. The second information is a previously determined distribution of heat transfer coefficients inside the autoclave. Finally, an experimental proof of concept is performed to show a cycle time reduction of up to 31\% using the proposed methodology.}, language = {en} } @inproceedings{StrieganHajAyedFunkeetal.2017, author = {Striegan, C. and Haj Ayed, A. and Funke, Harald and Loechle, S. and Kazari, M. and Horikawa, A. and Okada, K. and Koga, K.}, title = {Numerical combustion and heat transfer simulations and validation for a hydrogen fueled "micromix" test combustor in industrial gas turbine applications}, series = {Proceedings of the ASME Turbo Expo}, booktitle = {Proceedings of the ASME Turbo Expo}, number = {Volume Part F130041-4B, 2017}, isbn = {978-079185085-5}, doi = {10.1115/GT2017-64719}, year = {2017}, language = {en} } @inproceedings{HoevelerJanser2016, author = {Hoeveler, Bastian and Janser, Frank}, title = {The aerodynamically optimized design of a fan-in-wing duct}, series = {Applied Aerodynamics Research Conference 2016, Bristol, GB, Jul 19-21, 2016}, booktitle = {Applied Aerodynamics Research Conference 2016, Bristol, GB, Jul 19-21, 2016}, isbn = {1-85768-371-4}, pages = {1 -- 10}, year = {2016}, language = {en} } @inproceedings{OttenSchmidtWeber2016, author = {Otten, D. and Schmidt, M. and Weber, Tobias}, title = {Advances in Determination of Material Parameters for Functional Simulations Based on Process Simulations}, series = {SAMPE Europe Conference 16 Liege}, booktitle = {SAMPE Europe Conference 16 Liege}, isbn = {978-1-5108-3800-0}, pages = {570 -- 577}, year = {2016}, language = {en} } @inproceedings{WeberTellisDuhovic2016, author = {Weber, Tobias and Tellis, Jane J. and Duhovic, Miro}, title = {Characterization of tool-part-interaction an interlaminar friction for manufacturing process simulation}, series = {ECCM 17, 17th European Conference on Composite Materials, M{\"u}nchen, DE, Jun 26-30, 2016}, booktitle = {ECCM 17, 17th European Conference on Composite Materials, M{\"u}nchen, DE, Jun 26-30, 2016}, isbn = {978-3-00-053387-7}, pages = {1 -- 7}, year = {2016}, language = {en} } @inproceedings{HailerWeberArent2019, author = {Hailer, Benjamin and Weber, Tobias and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for Autoclave-Produced Sandwich Structures}, series = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, booktitle = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, pages = {1 -- 8}, year = {2019}, language = {en} } @inproceedings{WeberEnglhardHaileretal.2019, author = {Weber, Tobias and Englhard, Markus and Hailer, Benjamin and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling}, series = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, booktitle = {Proceedings of SAMPE Europe Conference 2019, Nantes, France}, pages = {1 -- 10}, year = {2019}, language = {en} } @inproceedings{WeberEnglhardHaileretal.2015, author = {Weber, Tobias and Englhard, Markus and Hailer, Benjamin and Arent, Jan-Christoph}, title = {Manufacturing Process Simulation for the Prediction of Tool-Part-Interaction and Ply Wrinkling}, series = {Proceedings of SAMPE Europe Conference, Amiens , France}, booktitle = {Proceedings of SAMPE Europe Conference, Amiens , France}, pages = {1 -- 10}, year = {2015}, language = {en} } @inproceedings{Weber2015, author = {Weber, Tobias}, title = {Manufacturing Process Simulation for Tooling Optimization: Reduction of Quality Issues During Autoclave Manufacturing of Composite Parts}, series = {Proceedings of SAMPE Europe Conference 2015, Amiens, France}, booktitle = {Proceedings of SAMPE Europe Conference 2015, Amiens, France}, pages = {1 -- 8}, year = {2015}, language = {en} } @inproceedings{OttenSchmidWeber2015, author = {Otten, D. and Schmid, M. and Weber, Tobias}, title = {Advances In Sheet Metal-Forming: Reduction Of Tooling Cost By Methodical Optimization}, series = {Proceedings of SAMPE Europe Conference, Amiens , France}, booktitle = {Proceedings of SAMPE Europe Conference, Amiens , France}, year = {2015}, language = {en} } @inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska}, title = {Numerical investigation of micromix hydrogen flames at different combustor pressure levels}, series = {The Proceedings of the International Conference on Power Engineering (ICOPE)}, booktitle = {The Proceedings of the International Conference on Power Engineering (ICOPE)}, doi = {10.1299/jsmeicope.2021.15.2021-0237}, pages = {4 Seiten}, year = {2021}, abstract = {This study investigates the influence of pressure on the temperature distribution of the micromix (MMX) hydrogen flame and the NOx emissions. A steady computational fluid dynamic (CFD) analysis is performed by simulating a reactive flow with a detailed chemical reaction model. The numerical analysis is validated based on experimental investigations. A quantitative correlation is parametrized based on the numerical results. We find, that the flame initiation point shifts with increasing pressure from anchoring behind a downstream located bluff body towards anchoring upstream at the hydrogen jet. The numerical NOx emissions trend regarding to a variation of pressure is in good agreement with the experimental results. The pressure has an impact on both, the residence time within the maximum temperature region and on the peak temperature itself. In conclusion, the numerical model proved to be adequate for future prototype design exploration studies targeting on improving the operating range.}, language = {en} } @inproceedings{HorikawaOkadaYamaguchietal.2021, author = {Horikawa, Atsushi and Okada, Kunio and Yamaguchi, Masato and Aoki, Shigeki and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Combustor development and engine demonstration of micro-mix hydrogen combustion applied to M1A-17 gas turbine}, series = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions}, booktitle = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3B: Combustion, Fuels, and Emissions}, doi = {10.1115/GT2021-59666}, pages = {13 Seiten}, year = {2021}, abstract = {Kawasaki Heavy Industries, LTD. (KHI) has research and development projects for a future hydrogen society. These projects comprise the complete hydrogen cycle, including the production of hydrogen gas, the refinement and liquefaction for transportation and storage, and finally the utilization in a gas turbine for electricity and heat supply. Within the development of the hydrogen gas turbine, the key technology is stable and low NOx hydrogen combustion, namely the Dry Low NOx (DLN) hydrogen combustion. KHI, Aachen University of Applied Science, and B\&B-AGEMA have investigated the possibility of low NOx micro-mix hydrogen combustion and its application to an industrial gas turbine combustor. From 2014 to 2018, KHI developed a DLN hydrogen combustor for a 2MW class industrial gas turbine with the micro-mix technology. Thereby, the ignition performance, the flame stability for equivalent rotational speed, and higher load conditions were investigated. NOx emission values were kept about half of the Air Pollution Control Law in Japan: 84ppm (O2-15\%). Hereby, the elementary combustor development was completed. From May 2020, KHI started the engine demonstration operation by using an M1A-17 gas turbine with a co-generation system located in the hydrogen-fueled power generation plant in Kobe City, Japan. During the first engine demonstration tests, adjustments of engine starting and load control with fuel staging were investigated. On 21st May, the electrical power output reached 1,635 kW, which corresponds to 100\% load (ambient temperature 20 °C), and thereby NOx emissions of 65 ppm (O2-15, 60 RH\%) were verified. Here, for the first time, a DLN hydrogen-fueled gas turbine successfully generated power and heat.}, language = {en} } @inproceedings{KronigerHorikawaFunkeetal.2021, author = {Kroniger, Daniel and Horikawa, Atsushi and Funke, Harald and Pf{\"a}ffle, Franziska and Kishimoto, Tsuyoshi and Okada, Koichi}, title = {Experimental and numerical investigation on the effect of pressure on micromix hydrogen combustion}, series = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3A: Combustion, Fuels, and Emissions}, booktitle = {Conference Proceedings Turbo Expo: Power for Land, Sea and Air, Volume 3A: Combustion, Fuels, and Emissions}, publisher = {ASME}, address = {New York, NY}, doi = {10.1115/GT2021-58926}, pages = {11 Seiten}, year = {2021}, abstract = {The micromix (MMX) combustion concept is a DLN gas turbine combustion technology designed for high hydrogen content fuels. Multiple non-premixed miniaturized flames based on jet in cross-flow (JICF) are inherently safe against flashback and ensure a stable operation in various operative conditions. The objective of this paper is to investigate the influence of pressure on the micromix flame with focus on the flame initiation point and the NOx emissions. A numerical model based on a steady RANS approach and the Complex Chemistry model with relevant reactions of the GRI 3.0 mechanism is used to predict the reactive flow and NOx emissions at various pressure conditions. Regarding the turbulence-chemical interaction, the Laminar Flame Concept (LFC) and the Eddy Dissipation Concept (EDC) are compared. The numerical results are validated against experimental results that have been acquired at a high pressure test facility for industrial can-type gas turbine combustors with regard to flame initiation and NOx emissions. The numerical approach is adequate to predict the flame initiation point and NOx emission trends. Interestingly, the flame shifts its initiation point during the pressure increase in upstream direction, whereby the flame attachment shifts from anchoring behind a downstream located bluff body towards anchoring directly at the hydrogen jet. The LFC predicts this change and the NOx emissions more accurately than the EDC. The resulting NOx correlation regarding the pressure is similar to a non-premixed type combustion configuration.}, language = {en} } @inproceedings{AyedStrieganKustereretal.2017, author = {Ayed, Anis Haj and Striegan, Constantin J. D. and Kusterer, Karsten and Funke, Harald and Kazari, M. and Horikawa, Atsushi and Okada, Kunio}, title = {Automated design space exploration of the hydrogen fueled "Micromix" combustor technology}, pages = {1 -- 8}, year = {2017}, abstract = {Combined with the use of renewable energy sources for its production, Hydrogen represents a possible alternative gas turbine fuel for future low emission power generation. Due to its different physical properties compared to other fuels such as natural gas, well established gas turbine combustion systems cannot be directly applied for Dry Low NOx (DLN) Hydrogen combustion. This makes the development of new combustion technologies an essential and challenging task for the future of hydrogen fueled gas turbines. The newly developed and successfully tested "DLN Micromix" combustion technology offers a great potential to burn hydrogen in gas turbines at very low NOx emissions. Aiming to further develop an existing burner design in terms of increased energy density, a redesign is required in order to stabilise the flames at higher mass flows and to maintain low emission levels. For this purpose, a systematic design exploration has been carried out with the support of CFD and optimisation tools to identify the interactions of geometrical and design parameters on the combustor performance. Aerodynamic effects as well as flame and emission formation are observed and understood time- and cost-efficiently. Correlations between single geometric values, the pressure drop of the burner and NOx production have been identified as a result. This numeric methodology helps to reduce the effort of manufacturing and testing to few designs for single validation campaigns, in order to confirm the flame stability and NOx emissions in a wider operating condition field.}, language = {en} } @inproceedings{HauggKreyerKemperetal.2020, author = {Haugg, Albert Thomas and Kreyer, J{\"o}rg and Kemper, Hans and Hatesuer, Katerina and Esch, Thomas}, title = {Heat exchanger for ORC. adaptability and optimisation potentials}, series = {IIR International Rankine 2020 Conference}, booktitle = {IIR International Rankine 2020 Conference}, doi = {10.18462/iir.rankine.2020.1224}, pages = {10 Seiten}, year = {2020}, abstract = {The recovery of waste heat requires heat exchangers to extract it from a liquid or gaseous medium into another working medium, a refrigerant. In Organic Rankine Cycles (ORC) on Combustion Engines there are two major heat sources, the exhaust gas and the water/glycol fluid from the engine's cooling circuit. A heat exchanger design must be adapted to the different requirements and conditions resulting from the heat sources, fluids, system configurations, geometric restrictions, and etcetera. The Stacked Shell Cooler (SSC) is a new and very specific design of a plate heat exchanger, created by AKG, which allows with a maximum degree of freedom the optimization of heat exchange rate and the reduction of the related pressure drop. This optimization in heat exchanger design for ORC systems is even more important, because it reduces the energy consumption of the system and therefore maximizes the increase in overall efficiency of the engine.}, language = {en} } @inproceedings{FunkeBeckmannKeinzetal.2017, author = {Funke, Harald and Beckmann, Nils and Keinz, Jan and Abanteriba, Sylvester}, title = {Numerical and Experimental Evaluation of a Dual-Fuel Dry-Low-NOx Micromix Combustor for Industrial Gas Turbine Applications}, series = {Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26-30, 2017}, booktitle = {Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 4B: Combustion, Fuels and Emissions. Charlotte, North Carolina, USA. June 26-30, 2017}, publisher = {ASME}, address = {New York}, isbn = {978-0-7918-5085-5}, doi = {10.1115/GT2017-64795}, year = {2017}, abstract = {The Dry-Low-NOx (DLN) Micromix combustion technology has been developed originally as a low emission alternative for industrial gas turbine combustors fueled with hydrogen. Currently the ongoing research process targets flexible fuel operation with hydrogen and syngas fuel. The non-premixed combustion process features jet-in-crossflow-mixing of fuel and oxidizer and combustion through multiple miniaturized flames. The miniaturization of the flames leads to a significant reduction of NOx emissions due to the very short residence time of reactants in the flame. The paper presents the results of a numerical and experimental combustor test campaign. It is conducted as part of an integration study for a dual-fuel (H2 and H2/CO 90/10 Vol.\%) Micromix combustion chamber prototype for application under full scale, pressurized gas turbine conditions in the auxiliary power unit Honeywell Garrett GTCP 36-300. In the presented experimental studies, the integration-optimized dual-fuel Micromix combustor geometry is tested at atmospheric pressure over a range of gas turbine operating conditions with hydrogen and syngas fuel. The experimental investigations are supported by numerical combustion and flow simulations. For validation, the results of experimental exhaust gas analyses are applied. Despite the significantly differing fuel characteristics between pure hydrogen and hydrogen-rich syngas the evaluated dual-fuel Micromix prototype shows a significant low NOx performance and high combustion efficiency. The combustor features an increased energy density that benefits manufacturing complexity and costs.}, language = {en} } @inproceedings{ThomaStiemerBraunetal.2023, author = {Thoma, Andreas and Stiemer, Luc and Braun, Carsten and Fisher, Alex and Gardi, Alessandro G.}, title = {Potential of hybrid neural network local path planner for small UAV in urban environments}, series = {AIAA SCITECH 2023 Forum}, booktitle = {AIAA SCITECH 2023 Forum}, publisher = {AIAA}, address = {Reston, Va.}, doi = {10.2514/6.2023-2359}, pages = {13 Seiten}, year = {2023}, abstract = {This work proposes a hybrid algorithm combining an Artificial Neural Network (ANN) with a conventional local path planner to navigate UAVs efficiently in various unknown urban environments. The proposed method of a Hybrid Artificial Neural Network Avoidance System is called HANNAS. The ANN analyses a video stream and classifies the current environment. This information about the current Environment is used to set several control parameters of a conventional local path planner, the 3DVFH*. The local path planner then plans the path toward a specific goal point based on distance data from a depth camera. We trained and tested a state-of-the-art image segmentation algorithm, PP-LiteSeg. The proposed HANNAS method reaches a failure probability of 17\%, which is less than half the failure probability of the baseline and around half the failure probability of an improved, bio-inspired version of the 3DVFH*. The proposed HANNAS method does not show any disadvantages regarding flight time or flight distance.}, language = {en} } @inproceedings{BergmannGraebenerWildetal.2019, author = {Bergmann, Kevin and Gr{\"a}bener, Josefine and Wild, Dominik and Ulfers, H. and Czupalla, Markus}, title = {Study on thermal stabilization of a GEO-stationary telescope baffling system by integral application of phase change material}, series = {International Conference on Environmental Systems}, booktitle = {International Conference on Environmental Systems}, pages = {1 -- 14}, year = {2019}, abstract = {The utilization of phase change material (PCM) for latent heat storage and thermal control of spacecraft has been demonstrated in the past in few missions only. One limiting factor was the fact that all concepts developed so far envisioned the PCM to be applied as an additional capacitor, encapsulated in its own housing, leading to mass, efficiency and accommodation challenges. Recently, the application of PCM within the scan cavity of a GEOS type satellite has been suggested, in order to tackle thermal issues due to direct sun intrusion (Choi, M., 2014). However, the application of PCM in such complex mechanical structures is extremely challenging. A new concept to tackle this issue is currently under development at the FH Aachen University of Applied Sciences. The concept "Infused Thermal Solutions (ITS)" is based on the idea to 3D print metallic structures in their regular functional shape, but double walled with internal lattice support structures, allowing the infusion of a PCM layer directly into the voids and eliminating the need for additional parts and interfaces. Together with OHB System, FH Aachen theoretically studied the application of this technology to the Meteosat Third Generation (MTG) Infra-Red Sounder (IRS) instrument. The study focuses on the scan cavity and entrance baffling assembly (EBA) of the IRS. It consists of thermal analyses, 3D-redesign and bread boarding of a scaled and PCM infused EBA version. In the thermal design of the alternative EBA, PCM was applied directly into the EBA, simulating the worst hot case sun intrusion of the mission. By applying 4kg of PCM (to a 60kg baffle) the EBA temperature excursions during sun intrusion were limited from 140K to 30K, leading to a significant thermo-opto-elastic performance gain. This paper introduces the ITS concept development status.}, language = {en} } @inproceedings{StarkRiepingEsch2023, author = {Stark, Ralf and Rieping, Carla and Esch, Thomas}, title = {The impact of guide tubes on flow separation in rocket nozzles}, series = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, booktitle = {Aerospace Europe Conference 2023 - 10th EUCASS - 9th CEAS}, pages = {8 Seiten}, year = {2023}, abstract = {Rocket engine test facilities and launch pads are typically equipped with a guide tube. Its purpose is to ensure the controlled and safe routing of the hot exhaust gases. In addition, the guide tube induces a suction that effects the nozzle flow, namely the flow separation during transient start-up and shut-down of the engine. A cold flow subscale nozzle in combination with a set of guide tubes was studied experimentally to determine the main influencing parameters.}, language = {en} } @inproceedings{HorikawaAshikagaYamaguchietal.2022, author = {Horikawa, Atsushi and Ashikaga, Mitsugu and Yamaguchi, Masato and Ogino, Tomoyuki and Aoki, Shigeki and Wirsum, Manfred and Funke, Harald and Kusterer, Karsten}, title = {Combined heat and power supply demonstration of Micro-Mix Hydrogen Combustion Applied to M1A-17 Gas Turbine}, series = {Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A)}, booktitle = {Proceedings of ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) (Volume 3A)}, publisher = {American Society of Mechanical Engineers}, address = {Fairfield}, isbn = {978-0-7918-8599-4}, doi = {10.1115/GT2022-81620}, pages = {7 Seiten}, year = {2022}, abstract = {Kawasaki Heavy Industries, Ltd. (KHI), Aachen University of Applied Sciences, and B\&B-AGEMA GmbH have investigated the potential of low NOx micro-mix (MMX) hydrogen combustion and its application to an industrial gas turbine combustor. Engine demonstration tests of a MMX combustor for the M1A-17 gas turbine with a co-generation system were conducted in the hydrogen-fueled power generation plant in Kobe City, Japan. This paper presents the results of the commissioning test and the combined heat and power (CHP) supply demonstration. In the commissioning test, grid interconnection, loading tests and load cut-off tests were successfully conducted. All measurement results satisfied the Japanese environmental regulation values. Dust and soot as well as SOx were not detected. The NOx emissions were below 84 ppmv at 15 \% O2. The noise level at the site boundary was below 60 dB. The vibration at the site boundary was below 45 dB. During the combined heat and power supply demonstration, heat and power were supplied to neighboring public facilities with the MMX combustion technology and 100 \% hydrogen fuel. The electric power output reached 1800 kW at which the NOx emissions were 72 ppmv at 15 \% O2, and 60 \%RH. Combustion instabilities were not observed. The gas turbine efficiency was improved by about 1 \% compared to a non-premixed type combustor with water injection as NOx reduction method. During a total equivalent operation time of 1040 hours, all combustor parts, the M1A-17 gas turbine as such, and the co-generation system were without any issues.}, language = {en} } @inproceedings{GierseKraemerDaabetal.2013, author = {Gierse, Andreas and Kr{\"a}mer, Stefan and Daab, Dominique J. and Hessel, Joana and Baader, Fabian and M{\"u}ller, Brigitte S. and Wagner, Tobias and Gdalewitsch, Georg and Plescher, Engelbert and Pf{\"u}tzenreuter, Lysan}, title = {Experimental in-flight modal-analysis of a sounding rocket structure}, series = {21st ESA Symposium on Rocket and Ballon related Research}, booktitle = {21st ESA Symposium on Rocket and Ballon related Research}, isbn = {9789290922858}, pages = {341 -- 346}, year = {2013}, language = {en} } @inproceedings{SeboldtDachwald2003, author = {Seboldt, Wolfgang and Dachwald, Bernd}, title = {Solar sails for near-term advanced scientific deep space missions}, series = {Proceedings of the 8th International Workshop on Combustion and Propulsion}, booktitle = {Proceedings of the 8th International Workshop on Combustion and Propulsion}, pages = {14 Seiten}, year = {2003}, abstract = {Solar sails are propelled in space by reflecting solar photons off large mirroring surfaces, thereby transforming the momentum of the photons into a propulsive force. This innovative concept for low-thrust space propulsion works without any propellant and thus provides a wide range of opportunities for highenergy low-cost missions. Offering an efficient way of propulsion, solar sailcraft could close a gap in transportation options for highly demanding exploration missions within our solar system and even beyond. On December 17th, 1999, a significant step was made towards the realization of this technology: a lightweight solar sail structure with an area of 20 m × 20 m was successfully deployed on ground in a large facility at the German Aerospace Center (DLR) at Cologne. The deployment from a package of 60 cm × 60 cm × 65 cm with a total mass of less than 35 kg was achieved using four extremely light-weight carbon fiber reinforced plastics (CFRP) booms with a specific mass of 100 g/m. The paper briefly reviews the basic principles of solar sails as well as the technical concept and its realization in the ground demonstration experiment, performed in close cooperation between DLR and ESA. Next possible steps are outlined. They could comprise the in-orbit demonstration of the sail deployment on the upper stage of a low-cost rocket and the verification of the propulsion concept by an autonomous and free flying solar sail in the frame of a scientific mission. It is expected that the present design could be extended to sail sizes of about (40 m)2 up to even (70 m)2 without significant mass penalty. With these areas, the maximum achievable thrust at 1 AU would range between 10 and 40 mN - comparable to some electric thrusters. Such prototype sails with a mass between 50 and 150 kg plus a micro-spacecraft of 50 to 250 kg would have a maximum acceleration in the order of 0.1 mm/s2 at 1 AU, corresponding to a maximum ∆V-capability of about 3 km/s per year. Two near/medium-term mission examples to a near-Earth asteroid (NEA) will be discussed: a rendezvous mission and a sample return mission.}, language = {en} } @inproceedings{DachwaldWurm2009, author = {Dachwald, Bernd and Wurm, P.}, title = {Mission analysis for an advanced solar photon thruster}, series = {60th International Astronautical Congress 2009, IAC 2009}, volume = {8}, booktitle = {60th International Astronautical Congress 2009, IAC 2009}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {6838 -- 6851}, year = {2009}, abstract = {The so-called "compound solar sail", also known as "Solar Photon Thruster" (SPT), is a solar sail design concept, for which the two basic functions of the solar sail, namely light collection and thrust direction, are uncoupled. In this paper, we introduce a novel SPT concept, termed the Advanced Solar Photon Thruster (ASPT). This model does not suffer from the simplified assumptions that have been made for the analysis of compound solar sails in previous studies. We present the equations that describe the force, which acts on the ASPT. After a detailed design analysis, the performance of the ASPT with respect to the conventional flat solar sail (FSS) is investigated for three interplanetary mission scenarios: An Earth-Venus rendezvous, where the solar sail has to spiral towards the Sun, an Earth-Mars rendezvous, where the solar sail has to spiral away from the Sun, and an Earth-NEA rendezvous (to near-Earth asteroid 1996FG3), where a large orbital eccentricity change is required. The investigated solar sails have realistic near-term characteristic accelerations between 0.1 and 0.2mm/s2. Our results show that a SPT is not superior to the flat solar sail unless very idealistic assumptions are made.}, language = {en} } @inproceedings{ThomaFisherBraun2020, author = {Thoma, Andreas and Fisher, Alex and Braun, Carsten}, title = {Improving the px4 avoid algorithm by bio-inspired flight strategies}, series = {DLRK2020 - „Luft- und Raumfahrt - Verantwortung in allen Dimensionen"}, booktitle = {DLRK2020 - „Luft- und Raumfahrt - Verantwortung in allen Dimensionen"}, doi = {10.25967/530183}, pages = {10 Seiten}, year = {2020}, language = {en} } @inproceedings{PeloniCeriottiDachwald2015, author = {Peloni, A. and Ceriotti, M. and Dachwald, Bernd}, title = {Preliminary trajectory design of a multiple NEO rendezvous mission through solar sailing}, series = {Proceedings of the International Astronautical Congress, IAC, Vol. 8, 2014}, booktitle = {Proceedings of the International Astronautical Congress, IAC, Vol. 8, 2014}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-63439-986-9}, pages = {5352 -- 5366}, year = {2015}, language = {en} } @inproceedings{KapoorBraunBoller2010, author = {Kapoor, Hrshi and Braun, Carsten and Boller, Christian}, title = {Modelling and optimisation of maintenance intervals to realize structural health monitoring applications on aircraft}, series = {Structural health monitoring 2010 : proceedings of the Fifth European Workshop on Structural Health Monitoring held at Sorrento, Naples, Italy, June 28 - July 4, 2010 ; [EWSHM]}, booktitle = {Structural health monitoring 2010 : proceedings of the Fifth European Workshop on Structural Health Monitoring held at Sorrento, Naples, Italy, June 28 - July 4, 2010 ; [EWSHM]}, editor = {Casciati, Fabio}, publisher = {DEStech Publ.}, address = {Lancaster, Pa.}, isbn = {978-1-60595-024-2}, pages = {55 -- 63}, year = {2010}, language = {en} } @inproceedings{Dachwald2005, author = {Dachwald, Bernd}, title = {Global optimization of low-thrust space missions using evolutionary neurocontrol}, series = {Proceedings of the international workshop on global optimization}, booktitle = {Proceedings of the international workshop on global optimization}, pages = {85 -- 90}, year = {2005}, abstract = {Low-thrust space propulsion systems enable flexible high-energy deep space missions, but the design and optimization of the interplanetary transfer trajectory is usually difficult. It involves much experience and expert knowledge because the convergence behavior of traditional local trajectory optimization methods depends strongly on an adequate initial guess. Within this extended abstract, evolutionary neurocontrol, a method that fuses artificial neural networks and evolutionary algorithms, is proposed as a smart global method for low-thrust trajectory optimization. It does not require an initial guess. The implementation of evolutionary neurocontrol is detailed and its performance is shown for an exemplary mission.}, language = {en} } @inproceedings{SchartnerLoebDachwaldetal.2009, author = {Schartner, Karl-Heinz and Loeb, H. W. and Dachwald, Bernd and Ohndorf, Andreas}, title = {Perspectives of electric propulsion for outer planetary and deep space missions}, series = {European Planetary Science Congress 2009}, booktitle = {European Planetary Science Congress 2009}, pages = {416 -- 416}, year = {2009}, abstract = {Solar-electric propulsion (SEP) is superior with respect to payload capacity, flight time and flexible launch window to the conventional interplanetary transfer method using chemical propulsion combined with gravity assists. This fact results from the large exhaust velocities of electric low-thrust propulsion and is favourable also for missions to the giant planets, Kuiper-belt objects and even for a heliopause probe (IHP) as shown in three studies by the authors funded by DLR. They dealt with a lander for Europa and a sample return mission from a mainbelt asteroid [1], with the TANDEM mission [2]; the third recent one investigates electric propulsion for the transfer to the edge of the solar system. All studies are based on triple-junction solar arrays, on rf-ion thrusters of the qualified RIT-22 type and they use the intelligent trajectory optimization program InTrance [3].}, language = {en} } @inproceedings{Dachwald2004, author = {Dachwald, Bernd}, title = {Solar sail performance requirements for missions to the outer solar system and beyond}, series = {55th International Astronautical Congress 2004}, booktitle = {55th International Astronautical Congress 2004}, doi = {10.2514/6.IAC-04-S.P.11}, pages = {1 -- 9}, year = {2004}, abstract = {Solar sails enable missions to the outer solar system and beyond, although the solar radiation pressure decreases with the square of solar distance. For such missions, the solar sail may gain a large amount of energy by first making one or more close approaches to the sun. Within this paper, optimal trajectories for solar sail missions to the outer planets and into near interstellar space (200 AU) are presented. Thereby, it is shown that even near/medium-term solar sails with relatively moderate performance allow reasonable transfer times to the boundaries of the solar system.}, language = {en} } @inproceedings{GoettenHavermannBraunetal.2018, author = {G{\"o}tten, Falk and Havermann, Marc and Braun, Carsten and Gomez, Francisco and Bil, Cees}, title = {On the Applicability of Empirical Drag Estimation Methods for Unmanned Air Vehicle Design Read More: https://arc.aiaa.org/doi/10.2514/6.2018-3192}, series = {2018 Aviation Technology, Integration, and Operations Conference, AIAA AVIATION Forum}, booktitle = {2018 Aviation Technology, Integration, and Operations Conference, AIAA AVIATION Forum}, issn = {1533-385X}, doi = {10.2514/6.2018-3192}, pages = {Article 3192}, year = {2018}, language = {en} } @inproceedings{PirovanoSeefeldtDachwaldetal.2015, author = {Pirovano, Laura and Seefeldt, Patric and Dachwald, Bernd and Noomen, Ron}, title = {Attitude and orbital modeling of an uncontrolled solar-sail experiment in low-Earth orbit}, series = {25th International Symposium on Space Flight Dynamics ISSFD}, booktitle = {25th International Symposium on Space Flight Dynamics ISSFD}, pages = {1 -- 15}, year = {2015}, abstract = {Gossamer-1 is the first project of the three-step Gossamer roadmap, the purpose of which is to develop, prove and demonstrate that solar-sail technology is a safe and reliable propulsion technique for long-lasting and high-energy missions. This paper firstly presents the structural analysis performed on the sail to understand its elastic behavior. The results are then used in attitude and orbital simulations. The model considers the main forces and torques that a satellite experiences in low-Earth orbit coupled with the sail deformation. Doing the simulations for varying initial conditions in attitude and rotation rate, the results show initial states to avoid and maximum rotation rates reached for correct and faulty deployment of the sail. Lastly comparisons with the classic flat sail model are carried out to test the hypothesis that the elastic behavior does play a role in the attitude and orbital behavior of the sail}, language = {en} } @inproceedings{DachwaldSeboldtLoebetal.2007, author = {Dachwald, Bernd and Seboldt, Wolfgang and Loeb, Horst W. and Schartner, Karl-Heinz}, title = {A comparison of SEP and NEP for a main belt asteroid sample return mission}, series = {7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007}, booktitle = {7th International Symposium on Launcher Technologies, Barcelona, Spain, 02-05 April 2007}, pages = {1 -- 10}, year = {2007}, abstract = {Innovative interplanetary deep space missions, like a main belt asteroid sample return mission, require ever larger velocity increments (∆V s) and thus ever more demanding propulsion capabilities. Providing much larger exhaust velocities than chemical high-thrust systems, electric low-thrust space-propulsion systems can significantly enhance or even enable such high-energy missions. In 1995, a European-Russian Joint Study Group (JSG) presented a study report on "Advanced Interplanetary Missions Using Nuclear-Electric Propulsion" (NEP). One of the investigated reference missions was a sample return (SR) from the main belt asteroid (19) Fortuna. The envisaged nuclear power plant, Topaz-25, however, could not be realized and also the worldwide developments in space reactor hardware stalled. In this paper, we investigate, whether such a mission is also feasible using a solar electric propulsion (SEP) system and compare our SEP results to corresponding NEP results.}, language = {en} } @inproceedings{DachwaldSeboldtHaeusler2002, author = {Dachwald, Bernd and Seboldt, Wolfgang and H{\"a}usler, Bernd}, title = {Performance requirements for near-term interplanetary solar sailcraft missions}, series = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, booktitle = {6th International AAAF Symposium on Space Propulsion: Propulsion for Space Transportation of the XXIst Century}, pages = {9 Seiten}, year = {2002}, abstract = {Solar sailcraft provide a wide range of opportunities for high-energy low-cost missions. To date, most mission studies require a rather demanding performance that will not be realized by solar sailcraft of the first generation. However, even with solar sailcraft of moderate performance, scientifically relevant missions are feasible. This is demonstrated with a Near Earth Asteroid sample return mission and various planetary rendezvous missions.}, language = {en} } @inproceedings{DachwaldKahleWie2007, author = {Dachwald, Bernd and Kahle, Ralph and Wie, Bong}, title = {Head-on impact deflection of NEAs: a case study for 99942 Apophis}, series = {Planetary Defense Conference 2007}, booktitle = {Planetary Defense Conference 2007}, pages = {1 -- 12}, year = {2007}, abstract = {Near-Earth asteroid (NEA) 99942 Apophis provides a typical example for the evolution of asteroid orbits that lead to Earth-impacts after a close Earth-encounter that results in a resonant return. Apophis will have a close Earth-encounter in 2029 with potential very close subsequent Earth-encounters (or even an impact) in 2036 or later, depending on whether it passes through one of several less than 1 km-sized gravitational keyholes during its 2029-encounter. A pre-2029 kinetic impact is a very favorable option to nudge the asteroid out of a keyhole. The highest impact velocity and thus deflection can be achieved from a trajectory that is retrograde to Apophis orbit. With a chemical or electric propulsion system, however, many gravity assists and thus a long time is required to achieve this. We show in this paper that the solar sail might be the better propulsion system for such a mission: a solar sail Kinetic Energy Impactor (KEI) spacecraft could impact Apophis from a retrograde trajectory with a very high relative velocity (75-80 km/s) during one of its perihelion passages. The spacecraft consists of a 160 m × 160 m, 168 kg solar sail assembly and a 150 kg impactor. Although conventional spacecraft can also achieve the required minimum deflection of 1 km for this approx. 320 m-sized object from a prograde trajectory, our solar sail KEI concept also allows the deflection of larger objects. For a launch in 2020, we also show that, even after Apophis has flown through one of the gravitational keyholes in 2029, the solar sail KEI concept is still feasible to prevent Apophis from impacting the Earth, but many KEIs would be required for consecutive impacts to increase the total Earth-miss distance to a safe value}, language = {en} } @inproceedings{BraunBouckeBallmann2005, author = {Braun, Carsten and Boucke, Alexander and Ballmann, Josef}, title = {Numerical prediction of the wing deformation of a high speed transport aircraft type wind tunnel model by direct aeroelastic simulation}, series = {Conference proceedings : CEAS/AIAA/DGLR International Forum on Aeroelasticity and Structural Dynamics IFASD 2005 : M{\"u}nchen, June 28 - July 1, 2005. DGLR-Bericht. 2005,04}, booktitle = {Conference proceedings : CEAS/AIAA/DGLR International Forum on Aeroelasticity and Structural Dynamics IFASD 2005 : M{\"u}nchen, June 28 - July 1, 2005. DGLR-Bericht. 2005,04}, publisher = {DGLR}, address = {Bonn}, isbn = {3-932182-43-X}, pages = {1 CD-ROM}, year = {2005}, language = {en} } @inproceedings{KonstantinidisKowalskiMartinezetal.2015, author = {Konstantinidis, K. and Kowalski, Julia and Martinez, C. F. and Dachwald, Bernd and Ewerhart, D. and F{\"o}rstner, R.}, title = {Some necessary technologies for in-situ astrobiology on enceladus}, series = {Proceedings of the International Astronautical Congress}, booktitle = {Proceedings of the International Astronautical Congress}, isbn = {978-151081893-4}, pages = {1354 -- 1372}, year = {2015}, language = {en} } @inproceedings{Dachwald2007, author = {Dachwald, Bernd}, title = {Low-Thrust Mission Analysis and Global Trajectory Optimization Using Evolutionary Neurocontrol: New Results}, series = {European Workshop on Space Mission Analysis ESA/ESOC, Darmstadt, Germany 10 { 12 Dec 2007}, booktitle = {European Workshop on Space Mission Analysis ESA/ESOC, Darmstadt, Germany 10 { 12 Dec 2007}, year = {2007}, abstract = {Interplanetary trajectories for low-thrust spacecraft are often characterized by multiple revolutions around the sun. Unfortunately, the convergence of traditional trajectory optimizers that are based on numerical optimal control methods depends strongly on an adequate initial guess for the control function (if a direct method is used) or for the starting values of the adjoint vector (if an indirect method is used). Especially when many revolutions around the sun are re- quired, trajectory optimization becomes a very difficult and time-consuming task that involves a lot of experience and expert knowledge in astrodynamics and optimal control theory, because an adequate initial guess is extremely hard to find. Evolutionary neurocontrol (ENC) was proposed as a smart method for low-thrust trajectory optimization that fuses artificial neural networks and evolutionary algorithms to so-called evolutionary neurocontrollers (ENCs) [1]. Inspired by natural archetypes, ENC attacks the trajectoryoptimization problem from the perspective of artificial intelligence and machine learning, a perspective that is quite different from that of optimal control theory. Within the context of ENC, a trajectory is regarded as the result of a spacecraft steering strategy that maps permanently the actual spacecraft state and the actual target state onto the actual spacecraft control vector. This way, the problem of searching the optimal spacecraft trajectory is equivalent to the problem of searching (or "learning") the optimal spacecraft steering strategy. An artificial neural network is used to implement such a spacecraft steering strategy. It can be regarded as a parameterized function (the network function) that is defined by the internal network parameters. Therefore, each distinct set of network parameters defines a different network function and thus a different steering strategy. The problem of searching the optimal steering strategy is now equivalent to the problem of searching the optimal set of network parameters. Evolutionary algorithms that work on a population of (artificial) chromosomes are used to find the optimal network parameters, because the parameters can be easily mapped onto a chromosome. The trajectory optimization problem is solved when the optimal chromosome is found. A comparison of solar sail trajectories that have been published by others [2, 3, 4, 5] with ENC-trajectories has shown that ENCs can be successfully applied for near-globally optimal spacecraft control [1, 6] and that they are able to find trajectories that are closer to the (unknown) global optimum, because they explore the trajectory search space more exhaustively than a human expert can do. The obtained trajectories are fairly accurate with respect to the terminal constraint. If a more accurate trajectory is required, the ENC-solution can be used as an initial guess for a local trajectory optimization method. Using ENC, low-thrust trajectories can be optimized without an initial guess and without expert attendance. Here, new results for nuclear electric spacecraft and for solar sail spacecraft are presented and it will be shown that ENCs find very good trajectories even for very difficult problems. Trajectory optimization results are presented for 1. NASA's Solar Polar Imager Mission, a mission to attain a highly inclined close solar orbit with a solar sail [7] 2. a mission to de ect asteroid Apophis with a solar sail from a retrograde orbit with a very-high velocity impact [8, 9] 3. JPL's \2nd Global Trajectory Optimization Competition", a grand tour to visit four asteroids from different classes with a NEP spacecraft}, language = {en} } @inproceedings{LoebSchartnerSeboldtetal.2006, author = {Loeb, Horst W. and Schartner, Karl-Heinz and Seboldt, Wolfgang and Dachwald, Bernd and Streppel, Joern and Meusemann, Hans and Sch{\"u}lke, Peter}, title = {SEP for a lander mission to the jovian moon europa}, series = {57th International Astronautical Congress}, booktitle = {57th International Astronautical Congress}, doi = {10.2514/6.IAC-06-C4.4.04}, pages = {1 -- 12}, year = {2006}, abstract = {Under DLR-contract, Giessen University and DLR Cologne are studying solar-electric propulsion missions (SEP) to the outer regions of the solar system. The most challenging reference mission concerns the transport of a 1.35-tons chemical lander spacecraft into an 80-RJ circular orbit around Jupiter, which would enable to place a 375 kg lander with 50 kg of scientific instruments on the surface of the icy moon "Europa". Thorough analyses show that the best solution in terms of SEP launch mass times thrusting time would be a two-stage EP module and a triple-junction solar array with concentrators which would be deployed step by step. Mission performance optimizations suggest to propel the spacecraft in the first EP stage by 6 gridded ion thrusters, running at 4.0 kV of beam voltage, which would save launch mass, and in the second stage by 4 thrusters with 1.25 to 1.5 kV of positive high voltage saving thrusting time. In this way, the launch mass of the spacecraft would be kept within 5.3 tons. Without a launcher's C3 and interplanetary gravity assists, Jupiter might be reached within about 4 yrs. The spiraling-down into the parking orbit would need another 1.8 yrs. This "large mission" can be scaled down to a smaller one, e.g., by halving all masses, the solar array power, and the number of thrusters. Due to their reliability, long lifetime and easy control, RIT-22 engines have been chosen for mission analysis. Based on precise tests, the thruster performance has been modeled.}, language = {en} } @inproceedings{GehlerOberBloebaumDachwald2009, author = {Gehler, M. and Ober-Bl{\"o}baum, S. and Dachwald, Bernd}, title = {Application of discrete mechanics and optimal control to spacecraft in non-keplerian motion around small solar system bodies}, series = {Procceedings of the 60th International Astronautical Congress}, booktitle = {Procceedings of the 60th International Astronautical Congress}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-161567908-9}, pages = {1360 -- 1371}, year = {2009}, abstract = {Prolonged operations close to small solar system bodies require a sophisticated control logic to minimize propellant mass and maximize operational efficiency. A control logic based on Discrete Mechanics and Optimal Control (DMOC) is proposed and applied to both conventionally propelled and solar sail spacecraft operating at an arbitrarily shaped asteroid in the class of Itokawa. As an example, stand-off inertial hovering is considered, recently identified as a challenging part of the Marco Polo mission. The approach is easily extended to stand-off orbits. We show that DMOC is applicable to spacecraft control at small objects, in particular with regard to the fact that the changes in gravity are exploited by the algorithm to optimally control the spacecraft position. Furthermore, we provide some remarks on promising developments.}, language = {en} } @inproceedings{Dachwald2017, author = {Dachwald, Bernd}, title = {Radiation pressure force model for an ideal laser-enhanced solar sail}, series = {4th International Symposium on Solar Sailing}, booktitle = {4th International Symposium on Solar Sailing}, pages = {1 -- 5}, year = {2017}, abstract = {The concept of a laser-enhanced solar sail is introduced and the radiation pressure force model for an ideal laser-enhanced solar sail is derived. A laser-enhanced solar sail is a "traditional" solar sail that is, however, not solely propelled by solar radiation, but additionally by a laser beam that illuminates the sail. The additional laser radiation pressure increases the sail's propulsive force and can give, depending on the location of the laser source, more control authority over the direction of the solar sail's propulsive force vector. This way, laser-enhanced solar sails may augment already existing solar sail mission concepts and make novel mission concepts feasible.}, language = {en} } @inproceedings{DachwaldBaturkinCoverstoneetal.2005, author = {Dachwald, Bernd and Baturkin, Volodymyr and Coverstone, Victoria and Diedrich, Ben and Garbe, Gregory and G{\"o}rlich, Marianne and Leipold, Manfred and Lura, Franz and Macdonald, Malcolm and McInnes, Colin and Mengali, Giovanni and Quarta, Alessandro and Rios-Reyes, Leonel and Scheeres, Daniel J. and Seboldt, Wolfgang and Wie, Bong}, title = {Potential effects of optical solar sail degredation on trajectory design}, series = {AAS/AIAA Astrodynamics Specialist}, booktitle = {AAS/AIAA Astrodynamics Specialist}, pages = {1 -- 23}, year = {2005}, abstract = {The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions.}, language = {en} } @inproceedings{WaldmannVeraDachwaldetal.2018, author = {Waldmann, Christoph and Vera, Jean-Pierre de and Dachwald, Bernd and Strasdeit, Henry and Sohl, Frank and Hanff, Hendrik and Kowalski, Julia and Heinen, Dirk and Macht, Sabine and Bestmann, Ulf and Meckel, Sebastian and Hildebrandt, Marc and Funke, Oliver and Gehrt, Jan-J{\"o}ran}, title = {Search for life in ice-covered oceans and lakes beyond Earth}, series = {2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761}, booktitle = {2018 IEEE/OES Autonomous Underwater Vehicle Workshop, Proceedings November 2018, Article number 8729761}, doi = {10.1109/AUV.2018.8729761}, year = {2018}, abstract = {The quest for life on other planets is closely connected with the search for water in liquid state. Recent discoveries of deep oceans on icy moons like Europa and Enceladus have spurred an intensive discussion about how these waters can be accessed. The challenge of this endeavor lies in the unforeseeable requirements on instrumental characteristics both with respect to the scientific and technical methods. The TRIPLE/nanoAUV initiative is aiming at developing a mission concept for exploring exo-oceans and demonstrating the achievements in an earth-analogue context, exploring the ocean under the ice shield of Antarctica and lakes like Dome-C on the Antarctic continent.}, language = {en} } @inproceedings{FingerKhalsaKreyeretal.2019, author = {Finger, Felix and Khalsa, R. and Kreyer, J{\"o}rg and Mayntz, Joscha and Braun, Carsten and Dahmann, Peter and Esch, Thomas and Kemper, Hans and Schmitz, O. and Bragard, Michael}, title = {An approach to propulsion system modelling for the conceptual design of hybrid-electric general aviation aircraft}, series = {Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2019, 30.9.-2.10.2019, Darmstadt}, pages = {15 Seiten}, year = {2019}, abstract = {In this paper, an approach to propulsion system modelling for hybrid-electric general aviation aircraft is presented. Because the focus is on general aviation aircraft, only combinations of electric motors and reciprocating combustion engines are explored. Gas turbine hybrids will not be considered. The level of the component's models is appropriate for the conceptual design stage. They are simple and adaptable, so that a wide range of designs with morphologically different propulsive system architectures can be quickly compared. Modelling strategies for both mass and efficiency of each part of the propulsion system (engine, motor, battery and propeller) will be presented.}, language = {en} } @inproceedings{FingerdeVriesVosetal.2020, author = {Finger, Felix and de Vries, Reynard and Vos, Roelof and Braun, Carsten and Bil, Cees}, title = {A comparison of hybrid-electric aircraft sizing methods}, series = {AIAA Scitech 2020 Forum}, booktitle = {AIAA Scitech 2020 Forum}, doi = {10.2514/6.2020-1006}, pages = {31 Seiten}, year = {2020}, abstract = {The number of case studies focusing on hybrid-electric aircraft is steadily increasing, since these configurations are thought to lead to lower operating costs and environmental impact than traditional aircraft. However, due to the lack of reference data of actual hybrid-electric aircraft, in most cases, the design tools and results are difficult to validate. In this paper, two independently developed approaches for hybrid-electric conceptual aircraft design are compared. An existing 19-seat commuter aircraft is selected as the conventional baseline, and both design tools are used to size that aircraft. The aircraft is then re-sized under consideration of hybrid-electric propulsion technology. This is performed for parallel, serial, and fully-electric powertrain architectures. Finally, sensitivity studies are conducted to assess the validity of the basic assumptions and approaches regarding the design of hybrid-electric aircraft. Both methods are found to predict the maximum take-off mass (MTOM) of the reference aircraft with less than 4\% error. The MTOM and payload-range energy efficiency of various (hybrid-) electric configurations are predicted with a maximum difference of approximately 2\% and 5\%, respectively. The results of this study confirm a correct formulation and implementation of the two design methods, and the data obtained can be used by researchers to benchmark and validate their design tools.}, language = {en} } @inproceedings{ThenentDahmann2011, author = {Thenent, N. E. and Dahmann, Peter}, title = {Increasing aircraft design flexibility - The development of a hydrostatic transmission for gliders with self-launching capability}, series = {Deutscher Luft- und Raumfahrtkongress 2011 : Bremen, 27. bis 29. September 2011 ; Tagungsband}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2011 : Bremen, 27. bis 29. September 2011 ; Tagungsband}, publisher = {Dt. Gesellschaft f{\"u}r Luft- und Raumfahrt}, address = {Bonn}, isbn = {978-3-9321-8274-7}, pages = {865 -- 883}, year = {2011}, language = {en} } @inproceedings{FingerGoettenBraun2018, author = {Finger, Felix and G{\"o}tten, Falk and Braun, Carsten}, title = {Initial Sizing for a Family of Hybrid-Electric VTOL General Aviation Aircraft}, series = {67. Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {67. Deutscher Luft- und Raumfahrtkongress 2018}, pages = {14 S.}, year = {2018}, language = {en} } @inproceedings{ThenentDahmann2011, author = {Thenent, N. E. and Dahmann, Peter}, title = {Hydrostatic propeller drive}, series = {Proceedings of the conference : 18 - 20 May, 2011 Tampere, Finland / the Twelth Scandinavian International Conference on Fluid Power, SICFP'11. Ed.: Harri Sairiala ... Vol. 1}, booktitle = {Proceedings of the conference : 18 - 20 May, 2011 Tampere, Finland / the Twelth Scandinavian International Conference on Fluid Power, SICFP'11. Ed.: Harri Sairiala ... Vol. 1}, address = {Tampere}, isbn = {978-952-15-2517-9}, pages = {217 -- 227}, year = {2011}, language = {en} } @inproceedings{KorschDafnisReimerdesetal.2006, author = {Korsch, Helge and Dafnis, Athanasios and Reimerdes, Hans-G{\"u}nther and Braun, Carsten and Ballmann, Josef}, title = {Dynamic qualification of the HIRENASD elastic wing model}, series = {Motto: Luft- und Raumfahrt: Lehre, Forschung, Industrie - gemeinsam innovativ. Deutscher Luft- und Raumfahrtkongress 2006 : Braunschweig, 06. bis 09. November 2006. Jahrbuch / Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt. 2006}, booktitle = {Motto: Luft- und Raumfahrt: Lehre, Forschung, Industrie - gemeinsam innovativ. Deutscher Luft- und Raumfahrtkongress 2006 : Braunschweig, 06. bis 09. November 2006. Jahrbuch / Deutsche Gesellschaft f{\"u}r Luft- und Raumfahrt. 2006}, publisher = {Dt. Gesellschaft f{\"u}r Luft- und Raumfahrt - Lilienthal-Oberth (DGLR)}, address = {Bonn}, pages = {1441 -- 1450}, year = {2006}, language = {en} } @inproceedings{NiedermeierClemensKowalskietal.2014, author = {Niedermeier, H. and Clemens, J. and Kowalski, Julia and Macht, S. and Heinen, D. and Hoffmann, R. and Linder, Peter}, title = {Navigation system for a research ice probe for antarctic glaciers}, series = {IEEE/ION Position, Location and Navigation Symposium (PLANS) ; 5-8 May 2014, Monterey, Calif.}, booktitle = {IEEE/ION Position, Location and Navigation Symposium (PLANS) ; 5-8 May 2014, Monterey, Calif.}, publisher = {IEEE}, address = {Piscataway, NJ}, organization = {Position, Location and Navigation Symposium <2014, Monterey, Calif.>}, isbn = {978-1-4799-3319-8}, pages = {959 -- 975}, year = {2014}, language = {en} } @inproceedings{SeboldtBlomeDachwaldetal.2004, author = {Seboldt, Wolfgang and Blome, Hans-Joachim and Dachwald, Bernd and Richter, Lutz}, title = {Proposal for an integrated European space exploration strategy}, series = {55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law}, booktitle = {55th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law}, pages = {1 -- 10}, year = {2004}, abstract = {Recently, in his vision for space exploration, US president Bush announced to extend human presence across the solar system, starting with a human return to the Moon as early as 2015 in preparation for human exploration of Mars and other destinations. In Europe, an exploration program, termed AURORA, was established by ESA in 2001 - funded on a voluntary basis by ESA member states - with a clear focus on Mars and the ultimate goal of landing humans on Mars around 2030 in international cooperation. In 2003, a Human Spaceflight Vision Group was appointed by ESA with the task to develop a vision for the role of human spaceflight during the next quarter of the century. The resulting vision focused on a European-led lunar exploration initiative as part of a multi-decade, international effort to strengthen European identity and economy. After a review of the situation in Europe concerning space exploration, the paper outlines an approach for a consistent positioning of exploration within the existing European space programs, identifies destinations, and develops corresponding scenarios for an integrated strategy, starting with robotic missions to the Moon, Mars, and near-Earth asteroids. The interests of the European planetary in-situ science community, which recently met at DLR Cologne, are considered. Potential robotic lunar missions comprise polar landings to search for frozen volatiles and a sample return. For Mars, the implementation of a modest robotic landing mission in 2009 to demonstrate the capability for landing and prepare more ambitious and complex missions is discussed. For near-Earth asteroid exploration, a low-cost in-situ technology demonstration mission could yield important results. All proposed scenarios offer excellent science and could therefore create synergies between ESA's mandatory and optional programs in the area of planetary science and exploration. The paper intents to stimulate the European discussion on space exploration and reflects the personal view of the authors.}, language = {en} } @inproceedings{WellmerChenBraunetal.2007, author = {Wellmer, Georg and Chen, B.-H. and Braun, Carsten and Ballmann, Josef}, title = {Numerical prediction of aeroelastic effects on twin-sting-rig mounted models for rear fuselage and empennage flow investigation in transonic windtunnel}, series = {Proceedings / IFASD 2007, CEAS/AIAA/KTH International Forum on Aeroelasticity and Structural Dynamics, June 18 - 21, 2007, Stockholm, Sweden}, booktitle = {Proceedings / IFASD 2007, CEAS/AIAA/KTH International Forum on Aeroelasticity and Structural Dynamics, June 18 - 21, 2007, Stockholm, Sweden}, publisher = {KTH}, address = {Stockholm}, organization = {Confederation of European Aerospace Societies ; American Institute of Aeronautics and Astronautics, Reston, Va. ; Kungliga Tekniska H{\"o}gskolan, Stockholm}, pages = {1 CD-ROM}, year = {2007}, language = {en} } @inproceedings{DigelDachwaldArtmannetal.2009, author = {Digel, Ilya and Dachwald, Bernd and Artmann, Gerhard and Linder, Peter and Funke, O.}, title = {A concept of a probe for particle analysis and life detection in icy environments}, year = {2009}, abstract = {A melting probe equipped with autofluorescence-based detection system combined with a light scattering unit, and, optionally, with a microarray chip would be ideally suited to probe icy environments like Europa's ice layer as well as the polar ice layers of Earth and Mars for recent and extinct live.}, subject = {Sonde}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2019, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Impact of Propulsion Technology Levels on the Sizing and Energy Consumption for Serial HybridElectric General Aviation Aircraft}, series = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, booktitle = {Asia Pacific International Symposium on Aerospace Technology. APISAT 2019}, pages = {14 Seiten}, year = {2019}, language = {en} } @inproceedings{SchildtBraunMarcocca2017, author = {Schildt, P. and Braun, Carsten and Marcocca, P.}, title = {Flight testing the extra 330LE flying testbed}, series = {48th Annual International Symposium of the Society of Flight Test Engineers 2017}, booktitle = {48th Annual International Symposium of the Society of Flight Test Engineers 2017}, isbn = {978-151085387-4}, pages = {349 -- 362}, year = {2017}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Serial Hybrid Propulsion Systems}, series = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, booktitle = {Luft- und Raumfahrt - Digitalisierung und Vernetzung : Deutscher Luft- und Raumfahrtkongress 2018. 4. - 6. September 2018 - Friedrichshafen}, pages = {11 S.}, year = {2018}, language = {en} } @inproceedings{LudowicyRingsFingeretal.2018, author = {Ludowicy, Jonas and Rings, Ren{\´e} and Finger, Felix and Braun, Carsten}, title = {Sizing Studies of Light Aircraft with Parallel Hybrid Propulsion Systems}, series = {Deutscher Luft- und Raumfahrtkongress 2018}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2018}, doi = {10.25967/480227}, pages = {15 S.}, year = {2018}, language = {en} } @inproceedings{FingerBraunBil2018, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {Case studies in initial sizing for hybrid-electric general aviation aircraft}, series = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, booktitle = {2018 AIAA/IEEE Electric Aircraft Technologies Symposium, Cincinnati, Ohio}, doi = {10.2514/6.2018-5005}, year = {2018}, language = {en} } @inproceedings{Finger2016, author = {Finger, Felix}, title = {Comparative Performance and Benefit Assessment of VTOL and CTOL UAVs}, series = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, booktitle = {Deutscher Luft- und Raumfahrtkongress (DLRK) 2016, 13.-15.9.2016}, pages = {10 Seiten}, year = {2016}, language = {en} } @inproceedings{PeekenTroederSchmidtetal.1985, author = {Peeken, Heinz and Troeder, Christoph and Schmidt, J. and Rosenkranz, Josef}, title = {Principles of machine noise reduction}, series = {Inter-noise 85 : proceedings ; 1985 international conference on noise control engineering ; Munich, Sept. 18 - 20, 1985. - (Schriftenreihe der Bundesanstalt f{\"u}r Arbeitsschutz : Tagungsbericht ; 39)}, booktitle = {Inter-noise 85 : proceedings ; 1985 international conference on noise control engineering ; Munich, Sept. 18 - 20, 1985. - (Schriftenreihe der Bundesanstalt f{\"u}r Arbeitsschutz : Tagungsbericht ; 39)}, publisher = {Bundesanstalt f{\"u}r Arbeitsschutz [u.a.]}, address = {Dortmund [u.a.]}, isbn = {3-88314-417-7}, pages = {23 -- 36}, year = {1985}, language = {en} } @inproceedings{FunkeHajAyedKustereretal.2014, author = {Funke, Harald and Haj Ayed, A. and Kusterer, K. and Keinz, Jan and Kazari, M. and Kitajima, J. and Horikawa, A. and Okada, K.}, title = {Numerical Study on Increased Energy Density for the DLN Micromix Hydrogen Combustion Principle}, series = {Combustion, Fuels and Emissions (ASME Turbo Expo 2014: Turbine Technical Conference and Exposition : D{\"u}sseldorf, Germany, June 16-20, 2014 ; Vol. 4A)}, booktitle = {Combustion, Fuels and Emissions (ASME Turbo Expo 2014: Turbine Technical Conference and Exposition : D{\"u}sseldorf, Germany, June 16-20, 2014 ; Vol. 4A)}, publisher = {ASME}, address = {New York, N.Y.}, isbn = {978-0-7918-4568-4}, pages = {V04AT04A057}, year = {2014}, language = {en} } @inproceedings{Mertens1999, author = {Mertens, Josef}, title = {Some important results of the technology programme RaWid}, series = {New Results in Numerical and Experimental Fluid Mechanics : Contributions to the 11th AG STAB/DGLR Symposium Berlin, Germany 1998. - Vol. 2. - (Notes on Numerical Fluid Mechanics ; 72)}, booktitle = {New Results in Numerical and Experimental Fluid Mechanics : Contributions to the 11th AG STAB/DGLR Symposium Berlin, Germany 1998. - Vol. 2. - (Notes on Numerical Fluid Mechanics ; 72)}, editor = {Nitsche, Wolfgang}, publisher = {Springer Fachmedien}, address = {Wiesbaden}, isbn = {978-3-663-10903-7 (Print)}, doi = {10.1007/978-3-663-10901-3_41}, pages = {315 -- 322}, year = {1999}, language = {en} } @inproceedings{Wahle1983, author = {Wahle, Michael}, title = {Calculation of the response of heat exchanger tubes with regard to nonlinear and prestressing effects}, series = {Vibration in nuclear plant : proceedings of the 3rd International Conference on Vibration in Nuclear Plant held on 11 - 14 May 1982, Keswick ; vol. 1}, booktitle = {Vibration in nuclear plant : proceedings of the 3rd International Conference on Vibration in Nuclear Plant held on 11 - 14 May 1982, Keswick ; vol. 1}, publisher = {British Nuclear Energy Society}, address = {London}, isbn = {0-7277-0192-4 (Druckausg.)}, pages = {162 -- 183}, year = {1983}, language = {en} } @inproceedings{CarzanaDachwaldNoomen2017, author = {Carzana, Livio and Dachwald, Bernd and Noomen, Ron}, title = {Model and trajectory optimization for an ideal laser-enhanced solar sail}, series = {68th International Astronautical Congress}, booktitle = {68th International Astronautical Congress}, year = {2017}, abstract = {A laser-enhanced solar sail is a solar sail that is not solely propelled by solar radiation but additionally by a laser beam that illuminates the sail. This way, the propulsive acceleration of the sail results from the combined action of the solar and the laser radiation pressure onto the sail. The potential source of the laser beam is a laser satellite that coverts solar power (in the inner solar system) or nuclear power (in the outer solar system) into laser power. Such a laser satellite (or many of them) can orbit anywhere in the solar system and its optimal orbit (or their optimal orbits) for a given mission is a subject for future research. This contribution provides the model for an ideal laser-enhanced solar sail and investigates how a laser can enhance the thrusting capability of such a sail. The term "ideal" means that the solar sail is assumed to be perfectly reflecting and that the laser beam is assumed to have a constant areal power density over the whole sail area. Since a laser beam has a limited divergence, it can provide radiation pressure at much larger solar distances and increase the radiation pressure force into the desired direction. Therefore, laser-enhanced solar sails may make missions feasible, that would otherwise have prohibitively long flight times, e.g. rendezvous missions in the outer solar system. This contribution will also analyze exemplary mission scenarios and present optimial trajectories without laying too much emphasis on the design and operations of the laser satellites. If the mission studies conclude that laser-enhanced solar sails would have advantages with respect to "traditional" solar sails, a detailed study of the laser satellites and the whole system architecture would be the second next step}, language = {en} } @inproceedings{FingerBraunBil2017, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {The Impact of Electric Propulsion on the Performance of VTOL UAVs}, series = {Deutscher Luft- und Raumfahrtkongress 2017, DLRK , M{\"u}nchen}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2017, DLRK , M{\"u}nchen}, year = {2017}, language = {en} } @inproceedings{FingerBraunBil2017, author = {Finger, Felix and Braun, Carsten and Bil, Cees}, title = {A Review of Configuration Design for Distributed Propulsion Transitioning VTOL Aircraft}, series = {Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea}, booktitle = {Asia-Pacific International Symposium on Aerospace Technology 2017, APISAT 2017, Seoul, Korea}, pages = {15 Seiten}, year = {2017}, language = {en} } @inproceedings{Wahle1983, author = {Wahle, Michael}, title = {Determination of flow induced nonlinear vibrations of prestressed heat exchanger tubes}, series = {Advanced Course in Heat Exchangers : Theory and Practice ; ICHMT Symposium ; Dubrovnik, Croatia 1981. - (ICHMT digital library online ; 19)}, booktitle = {Advanced Course in Heat Exchangers : Theory and Practice ; ICHMT Symposium ; Dubrovnik, Croatia 1981. - (ICHMT digital library online ; 19)}, publisher = {Begell House}, address = {Redding, Connecticut}, pages = {339 -- 353}, year = {1983}, language = {en} } @inproceedings{NowackRoethBuehrigPolaczeketal.2008, author = {Nowack, N. and R{\"o}th, Thilo and B{\"u}hrig-Polaczek, Andreas and Klaus, G.}, title = {Advanced Sheet Metal Components Reinforced by Light Metal Cast Structures}, series = {Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11]}, booktitle = {Aluminium alloys : their physical and mechanical properties ; [proceedings of the 11th International Conference on Aluminium Alloys, 22 - 26 Sept. 2008, Aachen, Germany ; ICAA 11]}, number = {2}, editor = {Hirsch, J{\"u}rgen}, isbn = {978-3-527-32367-8}, pages = {2374 -- 2381}, year = {2008}, language = {en} } @inproceedings{LettiniHavermannGuidettietal.2010, author = {Lettini, Antonio and Havermann, Marc and Guidetti, Marco and Fornaciari, Andrea}, title = {Improved functionalities and energy saving potential on mobile machines combining electronics with flow sharing valve and variable displacement pump}, series = {7th International Fluid Power Conference - Vol. 3 - Aachen Efficiency through Fluid Power Workshop Proceedings}, booktitle = {7th International Fluid Power Conference - Vol. 3 - Aachen Efficiency through Fluid Power Workshop Proceedings}, publisher = {Apprimus Verlag}, address = {Aachen}, isbn = {978-3-940565-92-1}, pages = {103 -- 114}, year = {2010}, language = {en} } @inproceedings{ReckerBosschaertsWagemakersetal.2010, author = {Recker, Elmar and Bosschaerts, Walter and Wagemakers, Rolf and Hendrick, Patrick and Funke, Harald and B{\"o}rner, Sebastian}, title = {Experimental study of a round jet in cross-flow at low momentum ratio}, pages = {13 Seiten}, year = {2010}, abstract = {With the final objective of optimizing the "Micromix" hydrogen combustion principle, a round jet in a laminar cross-flow prior to its combustion is investigated experimentally using Stereoscopic Particle Image Velocimetry. Measurements are performed at a jet to cross-stream momentum ratio of 1 and a Reynolds number, based on the jet diameter and jet velocity, of 1600. The suitability to combine side, top and end views is analyzed statistically. The statistical theory of testing hypotheses, pertaining to the joint distribution of the averaged velocity along intersecting observation planes, is employed. Overall, the averaged velocity fields of the varying observation planes feature homogeneity at a 0.05 significance level. Minor discrepancies are related to the given experimental conditions. By use of image maps, averaged and instantaneous velocity fields, an attempt is made to elucidate the flow physics and a kinematically consistent vortex model is proposed. In the time-averaged flow field, the principal vortical systems were identified and the associated mixing visualized. The jet trajectory and physical dimensions scale with the momentum ratio times the jet diameter. The jet/cross-flow mixture converging upon the span-wise centre-line, the lifting action of the Counter Rotating Vortex Pair and the reversed flow region contribute to the high entrainment and mixedness. It is shown that the jet width is larger on the downstream side as compared to the upstream side of the centre-streamline. The deepest penetration of the particles on the outer boundary occurs in the centre-plane. Meanwhile, with increasing off-centre position, the boundaries all lay further from the centre-line position than does the boundary in the centre-plane, corresponding to a kidney-like shape of the flow cross-section. The generation of the Counter Rotating Vortex Pair and the instability mechanism is documented by instantaneous image maps and vector fields. The necessary circulation for the Counter Rotating Vortex Pair originates from a combined effect of steady in-hole, hanging and wake vortices. The strong cross-flow and jet interaction induces a three-dimensional waving, the stream-wise Counter Rotating Vortex Pair pair, leading to the formation of Ring Like Vortices. A secondary Counter Rotating Vortex Pair forms on top of the primary Counter Rotating Vortex Pair, resulting in mixing by "puffs". Overall, Stereoscopic Particle Image Velocimetry proofed capable of elucidating the Jet in Cross-Flow complex flow field. The gained insight in the mixing process will definitely contribute to the "Micromix" hydrogen combustion optimization.}, language = {en} } @inproceedings{FunkeRobinsonHendricketal.2010, author = {Funke, Harald and Robinson, A. E. and Hendrick, P. and Wagemakers, R.}, title = {Design and Testing of a Micromix Combustor With Recuperative Wall Cooling for a Hydrogen Fuelled µ-Scale Gas Turbine}, series = {Conference Proceedings ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 5: Industrial and Cogeneration; Microturbines and Small Turbomachinery; Oil and Gas Applications; Wind Turbine Technology}, booktitle = {Conference Proceedings ASME Turbo Expo 2010: Power for Land, Sea, and Air. Volume 5: Industrial and Cogeneration; Microturbines and Small Turbomachinery; Oil and Gas Applications; Wind Turbine Technology}, publisher = {ASME}, address = {New York, NY}, isbn = {978-0-7918-4400-7}, doi = {10.1115/GT2010-23453}, pages = {587 -- 596}, year = {2010}, abstract = {For more than a decade up to now there is an ongoing interest in small gas turbines downsized to micro-scale. With their high energy density they offer a great potential as a substitute for today's unwieldy accumulators, found in a variety of applications like laptops, small tools etc. But micro-scale gas turbines could not only be used for generating electricity, they could also produce thrust for powering small unmanned aerial vehicles (UAVs) or similar devices. Beneath all the great design challenges with the rotating parts of the turbomachinery at this small scale, another crucial item is in fact the combustion chamber needed for a safe and reliable operation. With the so called regular micromix burning principle for hydrogen successfully downscaled in an initial combustion chamber prototype of 10 kW energy output, this paper describes a new design attempt aimed at the integration possibilities in a μ-scale gas turbine. For manufacturing the combustion chamber completely out of stainless steel components, a recuperative wall cooling was introduced to keep the temperatures in an acceptable range. Also a new way of an integrated ignition was developed. The detailed description of the prototype's design is followed by an in depth report about the test results. The experimental investigations comprise a set of mass flow variations, coupled with a variation of the equivalence ratio for each mass flow at different inlet temperatures and pressures. With the data obtained by an exhaust gas analysis, a full characterisation concerning combustion efficiency and stability of the prototype chamber is possible. Furthermore the data show a full compliance with the expected operating requirements of the designated μ-scale gas turbine.}, language = {en} } @inproceedings{FunkeBoernerRobinsonetal.2010, author = {Funke, Harald and B{\"o}rner, Sebastian and Robinson, A. and Hendrick, P. and Recker, E.}, title = {Low NOx H2 combustion for industrial gas turbines of various power ranges}, year = {2010}, language = {en} } @inproceedings{BoernerFunkeHendricketal.2010, author = {B{\"o}rner, Sebastian and Funke, Harald and Hendrick, P. and Recker, E.}, title = {Control system modifications for a hydrogen fuelled gas-turbine}, series = {Proceedings of ISROMAC 13}, booktitle = {Proceedings of ISROMAC 13}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-617-38848-4}, pages = {665 -- 670}, year = {2010}, language = {en} } @inproceedings{MulsowHuelsenGuetzlaffetal.2023, author = {Mulsow, Niklas A. and H{\"u}lsen, Benjamin and G{\"u}tzlaff, Joel and Spies, Leon and Bresser, Andreas and Dabrowski, Adam and Czupalla, Markus and Kirchner, Frank}, title = {Concept and design of an autonomous micro rover for long term lunar exploration}, series = {Proceedings of the 74th International Astronautical Congress}, booktitle = {Proceedings of the 74th International Astronautical Congress}, publisher = {dfki}, address = {Saarbr{\"u}cken}, pages = {13 Seiten}, year = {2023}, abstract = {Research on robotic lunar exploration has seen a broad revival, especially since the Google Lunar X-Prize increasingly brought private endeavors into play. This development is supported by national agencies with the aim of enabling long-term lunar infrastructure for in-situ operations and the establishment of a moon village. One challenge for effective exploration missions is developing a compact and lightweight robotic rover to reduce launch costs and open the possibility for secondary payload options. Existing micro rovers for exploration missions are clearly limited by their design for one day of sunlight and their low level of autonomy. For expanding the potential mission applications and range of use, an extension of lifetime could be reached by surviving the lunar night and providing a higher level of autonomy. To address this objective, the paper presents a system design concept for a lightweight micro rover with long-term mission duration capabilities, derived from a multi-day lunar mission scenario at equatorial regions. Technical solution approaches are described, analyzed, and evaluated, with emphasis put on the harmonization of hardware selection due to a strictly limited budget in dimensions and power.}, language = {en} } @inproceedings{MayntzKeimerDahmannetal.2022, author = {Mayntz, Joscha and Keimer, Jona and Dahmann, Peter and Hille, Sebastian and Stumpf, Eike and Fisher, Alex and Dorrington, Graham}, title = {Electrical Drive and Regeneration in General Aviation Flight with Propellers}, series = {Deutscher Luft- und Raumfahrtkongress 2020}, booktitle = {Deutscher Luft- und Raumfahrtkongress 2020}, publisher = {DGLR}, address = {Bonn}, doi = {10.25967/530100}, pages = {8 Seiten}, year = {2022}, abstract = {Electric flight has the potential for a more sustainable and energy-saving way of aviation compared to fossil fuel aviation. The electric motor can be used as a generator inflight to regenerate energy during descent. Three different approaches to regenerating with electric propeller powertrains are proposed in this paper. The powertrain is to be set up in a wind tunnel to determine the propeller efficiency in both working modes as well as the noise emissions. Furthermore, the planned flight tests are discussed. In preparation for these tests, a yaw stability analysis is performed with the result that the aeroplane is controllable during flight and in the most critical failure case. The paper shows the potential for inflight regeneration and addresses the research gaps in the dual role of electric powertrains for propulsion and regeneration of general aviation aircraft.}, language = {en} } @inproceedings{HuthElsenHartwigetal.2006, author = {Huth, Thomas and Elsen, Olaf and Hartwig, Christoph and Esch, Thomas}, title = {Innovative modular valve trains for 2015 - logistic benefits by EMVT}, series = {IFAC Proceedings Volumes, Volume 39, Issue 3}, booktitle = {IFAC Proceedings Volumes, Volume 39, Issue 3}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.3182/20060517-3-FR-2903.00172}, pages = {315 -- 320}, year = {2006}, abstract = {In this paper the way to a 5-day-car with respect to a modular valve train systems for spark ignited combustion engines is shown. The necessary product diversity is shift from mechanical or physical components to software components. Therefore, significant improvements of logistic indicators are expected and shown. The working principle of a camless cylinder head with respect to an electromagnetical valve train (EMVT) is explained and it is demonstrated that shifting physical diversity to software is feasible. The future design of combustion engine systems including customisation can be supported by a set of assistance tools which is shown exemplary.}, language = {en} } @inproceedings{KohlbergerWildKasperetal.2021, author = {Kohlberger, David-Sharif and Wild, Dominik and Kasper, Stefan and Czupalla, Markus}, title = {Modeling and analyses of a thermal passively stabilized LEO/GEO star tracker with embedded phase change material applying the Infused Thermal Solutions (ITS) method}, series = {ICES202: Satellite, Payload, and Instrument Thermal Control}, booktitle = {ICES202: Satellite, Payload, and Instrument Thermal Control}, publisher = {Texas Tech University}, address = {Lubbock, Tex.}, pages = {12 Seiten}, year = {2021}, abstract = {Phase change materials offer a way of storing excess heat and releasing it when it is needed. They can be utilized as a method to control thermal behavior without the need for additional energy. This work focuses on exploring the potential of using phase change materials to passively control the thermal behavior of a star tracker by infusing it with a fitting phase change material. Based on the numerical model of the star trackers thermal behavior using ESATAN-TMS without implemented phase change material, a fitting phase change material for selected orbits is chosen and implemented in the thermal model. The altered thermal behavior of the numerical model after the implementation is analyzed for different amounts of the chosen phase change materials using an ESATAN-based subroutine developed by the FH Aachen. The PCM-modelling-subroutine is explained in the paper ICES-2021-110. The results show that an increasing amount of phase change material increasingly damps temperature oscillations. Using an integral part structure some of the mass increase can be compensated.}, language = {en} }