@article{HailerWeberNevelingetal.2020, author = {Hailer, Benjamin and Weber, Tobias and Neveling, Sebastian and Dera, Samuel and Arent, Jan-Christoph and Middendorf, Peter}, title = {Development of a test device to determine the frictional behavior between honeycomb and prepreg layers under realistic manufacturing conditions}, series = {Journal of Sandwich Structures \& Materials}, journal = {Journal of Sandwich Structures \& Materials}, number = {Volume 23, Issue 7}, publisher = {Sage}, address = {London}, issn = {1530-7972}, doi = {10.1177/1099636220923986}, pages = {3017 -- 3043}, year = {2020}, abstract = {In the friction tests between honeycomb with film adhesive and prepreg, the relative displacement occurs between the film adhesive and the prepreg. The film adhesive does not shift relative to the honeycomb. This is consistent with the core crush behavior where the honeycomb moves together with the film adhesive, as can be seen in Figure 2(a). The pull-through forces of the friction measurements between honeycomb and prepreg at 1 mm deformation are plotted in Figure 17(a). While the friction at 100°C is similar to the friction at 120°C, it decreases significantly at 130°C and exhibits a minimum at 140°C. At 150°C, the friction rises again slightly and then sharply at 160°C. Since the viscosity of the M18/1 prepreg resin drops significantly before it cures [23], the minimum friction at 140°C could result from a minimum viscosity of the mixture of prepreg resin and film adhesive before the bond subsequently cures. Figure 17(b) shows the mean value curve of the friction measurements at 140°C. The error bars, which represent the standard deviation, reveal the good repeatability of the tests. The force curve is approximately horizontal between 1 mm and 2 mm. The friction then slightly rises. As with interlaminar friction measurements, this could be due to the fact that resin is removed by friction and the proportion of boundary lubrication increases. Figure 18 shows the surfaces after the friction measurement. The honeycomb cell walls are clearly visible in the film adhesive. There are areas where the film adhesive is completely removed and the carrier material of the film adhesive becomes visible. In addition, the viscosity of the resin changes as the curing progresses during the friction test. This can also affect the force-displacement curve.}, language = {en} } @article{GoettenFinger2020, author = {G{\"o}tten, Falk and Finger, Felix}, title = {PhoenAIX - Die modulare Transportdrohne}, series = {Ingenieurspiegel}, volume = {2020}, journal = {Ingenieurspiegel}, number = {1}, publisher = {Public Verlag}, address = {Bingen}, isbn = {1868-5919}, pages = {38 -- 40}, year = {2020}, abstract = {Die autonome, unbemannte Luftfahrt ist einer der Schl{\"u}sselsektoren f{\"u}r die Zukunft der Luftfahrt. In diesem rasant wachsenden Bereich nehmen senkrecht startende und senkrecht landende Flugzeuge (Vertical Take-Off and Landing - VTOL) einen besonderen Platz ein. Ein VTOL-Flugzeug (manchmal auch „Transitionsflugger{\"a}t" genannt) verbindet die Eigenschaft des Helikopters, {\"u}berall starten und landen zu k{\"o}nnen, mit den Geschwindigkeits-, Reichweiten und Flugdauervorteilen des Starrfl{\"u}glers. Grunds{\"a}tzlich wird die Senkrechtstart- und -landef{\"a}higkeit sowohl von zivilen als auch von milit{\"a}rischen Betreibern unbemannter Flugger{\"a}te (UAVs) gew{\"u}nscht. Trotzdem bietet der Markt nur eine geringe Anzahl von VTOL-UAVs, da qualitativ hochwertige Entw{\"u}rfe eine ausgesprochene Herausforderung in der Entwicklung darstellen. An der FH Aachen wird deshalb seit {\"u}ber 5 Jahren an der Auslegung und Analyse von solchen unbemannten VTOL Flugzeugen geforscht. Das neuste Projekt ist der Eigenentwurf einer großen, senkrechtstartenden Transportdrohne. Das „PhoenAIX" getaufte Flugger{\"a}t wird von Falk G{\"o}tten und Felix Finger im Rahmen einer EFRE-F{\"o}rderung entwickelt.}, language = {de} } @inproceedings{AdamsLosekammCzupalla2020, author = {Adams, Moritz and Losekamm, Martin J. and Czupalla, Markus}, title = {Development of the Thermal Control System for the RadMap Telescope Experiment on the International Space Station}, series = {International Conference on Environmental Systems}, booktitle = {International Conference on Environmental Systems}, pages = {1 -- 10}, year = {2020}, language = {en} } @inproceedings{ThomaFisherBertrandetal.2020, author = {Thoma, Andreas and Fisher, Alex and Bertrand, Olivier and Braun, Carsten}, title = {Evaluation of possible flight strategies for close object evasion from bumblebee experiments}, series = {Living Machines 2020: Biomimetic and Biohybrid Systems}, booktitle = {Living Machines 2020: Biomimetic and Biohybrid Systems}, editor = {Vouloutsi, Vasiliki and Mura, Anna and Tauber, Falk and Speck, Thomas and Prescott, Tony J. and Verschure, Paul F. M. J.}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-64312-6}, doi = {10.1007/978-3-030-64313-3_34}, pages = {354 -- 365}, year = {2020}, language = {en} } @article{Schueckhaus2020, author = {Sch{\"u}ckhaus, Ulrich}, title = {Die SkyCab-Erfinder im WFMG-Interview}, series = {Business in MG}, journal = {Business in MG}, number = {1}, pages = {6 -- 7}, year = {2020}, language = {de} } @inproceedings{TamaldinEschTonolietal.2020, author = {Tamaldin, Noreffendy and Esch, Thomas and Tonoli, Andrea and Reisinger, Karl Heinz and Sprenger, Hanna and Razuli, Hisham}, title = {ERASMUS+ United CBHE Automotive International Collaboration from European to South East Asia}, series = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, booktitle = {Proceedings of the 2nd African International Conference on Industrial Engineering and Operations Management}, publisher = {IEOM Society International}, address = {Southfield}, isbn = {978-1-7923-6123-4}, issn = {2169-8767}, pages = {2970 -- 2972}, year = {2020}, abstract = {The industrial revolution especially in the IR4.0 era have driven many states of the art technologies to be introduced. The automotive industry as well as many other key industries have also been greatly influenced. The rapid development of automotive industries in Europe have created wide industry gap between European Union (EU) and developing countries such as in South East Asia (SEA). Indulging this situation, FH JOANNEUM, Austria together with European partners from FH Aachen, Germany and Politecnico di Torino, Italy are taking initiative to close down the gap utilizing the Erasmus+ United Capacity Building in Higher Education grant from EU. A consortium was founded to engage with automotive technology transfer using the European framework to Malaysian, Indonesian and Thailand Higher Education Institutions (HEI) as well as automotive industries in respective countries. This could be achieved by establishing Engineering Knowledge Transfer Unit (EKTU) in respective SEA institutions guided by the industry partners in their respective countries. This EKTU could offer updated, innovative and high-quality training courses to increase graduate's employability in higher education institutions and strengthen relations between HEI and the wider economic and social environment by addressing University-industry cooperation which is the regional priority for Asia. It is expected that, the Capacity Building Initiative would improve the quality of higher education and enhancing its relevance for the labor market and society in the SEA partners. The outcome of this project would greatly benefit the partners in strong and complementary partnership targeting the automotive industry and enhanced larger scale international cooperation between the European and SEA partners. It would also prepare the SEA HEI in sustainable partnership with Automotive industry in the region as a mean of income generation in the future.}, language = {en} }