@article{BechtSchollmayerMonakhovaetal.2021, author = {Becht, Alexander and Schollmayer, Curd and Monakhova, Yulia and Holzgrabe, Ulrike}, title = {Tracing the origin of paracetamol tablets by near-infrared, mid-infrared, and nuclear magnetic resonance spectroscopy using principal component analysis and linear discriminant analysis}, series = {Analytical and Bioanalytical Chemistry}, volume = {413}, journal = {Analytical and Bioanalytical Chemistry}, publisher = {Springer Nature}, issn = {1618-2650}, doi = {10.1007/s00216-021-03249-z}, pages = {3107 -- 3118}, year = {2021}, abstract = {Most drugs are no longer produced in their own countries by the pharmaceutical companies, but by contract manufacturers or at manufacturing sites in countries that can produce more cheaply. This not only makes it difficult to trace them back but also leaves room for criminal organizations to fake them unnoticed. For these reasons, it is becoming increasingly difficult to determine the exact origin of drugs. The goal of this work was to investigate how exactly this is possible by using different spectroscopic methods like nuclear magnetic resonance and near- and mid-infrared spectroscopy in combination with multivariate data analysis. As an example, 56 out of 64 different paracetamol preparations, collected from 19 countries around the world, were chosen to investigate whether it is possible to determine the pharmaceutical company, manufacturing site, or country of origin. By means of suitable pre-processing of the spectra and the different information contained in each method, principal component analysis was able to evaluate manufacturing relationships between individual companies and to differentiate between production sites or formulations. Linear discriminant analysis showed different results depending on the spectral method and purpose. For all spectroscopic methods, it was found that the classification of the preparations to their manufacturer achieves better results than the classification to their pharmaceutical company. The best results were obtained with nuclear magnetic resonance and near-infrared data, with 94.6\%/99.6\% and 98.7/100\% of the spectra of the preparations correctly assigned to their pharmaceutical company or manufacturer.}, language = {en} } @techreport{Drescher2021, type = {Working Paper}, author = {Drescher, Hans Paul}, title = {Turbulence - minimum dissipation and maximum macroscopic momentum exchange}, pages = {44 Seiten}, year = {2021}, abstract = {The minimum dissipation requirement of the thermodynamics of irreversible processes is applied to characterize the existence of laminar and non-laminar, and the co-existence of laminar and turbulent flow zones. Local limitations of the different zones and three different forms of transition are defined. For the Couette flow a non-local "corpuscular" flow mechanism explains the logarithmic law-of-the-wall, maximum turbulent dimensions and a value x=0,415 for the v. K{\´a}rm{\´a}n constant. Limitations of the logarithmic law near the wall and in the centre of the experiment are interpreted.}, language = {en} } @inproceedings{MuellerSchmittLeiseetal.2021, author = {M{\"u}ller, Tim M. and Schmitt, Andreas and Leise, Philipp and Meck, Tobias and Altherr, Lena and Pelz, Peter F. and Pfetsch, Marc E.}, title = {Validation of an optimized resilient water supply system}, series = {Uncertainty in Mechanical Engineering}, booktitle = {Uncertainty in Mechanical Engineering}, publisher = {Springer}, address = {Cham}, isbn = {978-3-030-77255-0}, doi = {10.1007/978-3-030-77256-7_7}, pages = {70 -- 80}, year = {2021}, abstract = {Component failures within water supply systems can lead to significant performance losses. One way to address these losses is the explicit anticipation of failures within the design process. We consider a water supply system for high-rise buildings, where pump failures are the most likely failure scenarios. We explicitly consider these failures within an early design stage which leads to a more resilient system, i.e., a system which is able to operate under a predefined number of arbitrary pump failures. We use a mathematical optimization approach to compute such a resilient design. This is based on a multi-stage model for topology optimization, which can be described by a system of nonlinear inequalities and integrality constraints. Such a model has to be both computationally tractable and to represent the real-world system accurately. We therefore validate the algorithmic solutions using experiments on a scaled test rig for high-rise buildings. The test rig allows for an arbitrary connection of pumps to reproduce scaled versions of booster station designs for high-rise buildings. We experimentally verify the applicability of the presented optimization model and that the proposed resilience properties are also fulfilled in real systems.}, language = {en} } @article{GermanMikuckiWelchetal.2021, author = {German, Laura and Mikucki, Jill A. and Welch, Susan A. and Welch, Kathleen A. and Lutton, Anthony and Dachwald, Bernd and Kowalski, Julia and Heinen, Dirk and Feldmann, Marco and Francke, Gero and Espe, Clemens and Lyons, W. Berry}, title = {Validation of sampling antarctic subglacial hypersaline waters with an electrothermal ice melting probe (IceMole) for environmental analytical geochemistry}, series = {International Journal of Environmental Analytical Chemistry}, volume = {101}, journal = {International Journal of Environmental Analytical Chemistry}, number = {15}, publisher = {Taylor \& Francis}, address = {London}, issn = {0306-7319}, doi = {10.1080/03067319.2019.1704750}, pages = {2654 -- 2667}, year = {2021}, abstract = {Geochemical characterisation of hypersaline waters is difficult as high concentrations of salts hinder the analysis of constituents at low concentrations, such as trace metals, and the collection of samples for trace metal analysis in natural waters can be easily contaminated. This is particularly the case if samples are collected by non-conventional techniques such as those required for aquatic subglacial environments. In this paper we present the first analysis of a subglacial brine from Taylor Valley, (~ 78°S), Antarctica for the trace metals: Ba, Co, Mo, Rb, Sr, V, and U. Samples were collected englacially using an electrothermal melting probe called the IceMole. This probe uses differential heating of a copper head as well as the probe's sidewalls and an ice screw at the melting head to move through glacier ice. Detailed blanks, meltwater, and subglacial brine samples were collected to evaluate the impact of the IceMole and the borehole pump, the melting and collection process, filtration, and storage on the geochemistry of the samples collected by this device. Comparisons between melt water profiles through the glacier ice and blank analysis, with published studies on ice geochemistry, suggest the potential for minor contributions of some species Rb, As, Co, Mn, Ni, NH4+, and NO2-+NO3- from the IceMole. The ability to conduct detailed chemical analyses of subglacial fluids collected with melting probes is critical for the future exploration of the hundreds of deep subglacial lakes in Antarctica.}, language = {en} } @inproceedings{HueningStuettgen2021, author = {H{\"u}ning, Felix and St{\"u}ttgen, Marcel}, title = {Work in Progress: Interdisciplinary projects in times of COVID-19 crisis - challenges, risks and chances}, series = {2021 IEEE Global Engineering Education Conference (EDUCON)}, booktitle = {2021 IEEE Global Engineering Education Conference (EDUCON)}, doi = {10.1109/EDUCON46332.2021.9454006}, pages = {1175 -- 1179}, year = {2021}, language = {en} }