@article{MoseleyHalamekKrameretal.2014, author = {Moseley, Fiona and Halamek, Jan and Kramer, Friederike and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Katz, Evgeny}, title = {An enzyme-based reversible CNOT logic gate realized in a flow system}, series = {Analyst}, volume = {139}, journal = {Analyst}, number = {8}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-5528 (E-Journal) ; 0003-2654 (Print)}, doi = {10.1039/C4AN00133H}, pages = {1839 -- 1842}, year = {2014}, abstract = {An enzyme system organized in a flow device was used to mimic a reversible Controlled NOT (CNOT) gate with two input and two output signals. Reversible conversion of NAD⁺ and NADH cofactors was used to perform a XOR logic operation, while biocatalytic hydrolysis of p-nitrophenyl phosphate resulted in an Identity operation working in parallel. The first biomolecular realization of a CNOT gate is promising for integration into complex biomolecular networks and future biosensor/biomedical applications.}, language = {en} } @article{LeinhosSchusserBaeckeretal.2014, author = {Leinhos, Marcel and Schusser, Sebastian and B{\"a}cker, Matthias and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Micromachined multi-parameter sensor chip for the control of polymer-degradation medium}, series = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, volume = {211}, journal = {Physica Status Solidi (A) : special issue on engineering and functional interfaces}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330364}, pages = {1346 -- 1351}, year = {2014}, abstract = {It is well known that the degradation environment can strongly influence the biodegradability and kinetics of biodegradation processes of polymers. Therefore, besides the monitoring of the degradation process, it is also necessary to control the medium in which the degradation takes place. In this work, a micromachined multi-parameter sensor chip for the control of the polymer-degradation medium has been developed. The chip combines a capacitive field-effect pH sensor, a four-electrode electrolyte-conductivity sensor and a thin-film Pt-temperature sensor. The results of characterization of individual sensors are presented. In addition, the multi-parameter sensor chip together with an impedimetric polymer-degradation sensor was simultaneously characterized in degradation solutions with different pH and electrolyte conductivity. The obtained results demonstrate the feasibility of the multi-parameter sensor chip for the control of the polymer-degradation medium.}, language = {en} } @article{HeineHerrmannSelmeretal.2014, author = {Heine, A. and Herrmann, G. and Selmer, Thorsten and Terwesten, F. and Buckel, W. and Reuter, K.}, title = {High resolution crystal structure of clostridium propionicum β-Alanyl-CoA:Ammonia Lyase, a new member of the "Hot Dog Fold" protein superfamily}, series = {Proteins}, volume = {82}, journal = {Proteins}, number = {9}, publisher = {Wiley-Liss}, address = {New York}, issn = {1097-0134 (E-Journal); 0887-3585 (Print)}, doi = {10.1002/prot.24557}, pages = {2041 -- 2053}, year = {2014}, abstract = {Clostridium propionicum is the only organism known to ferment β-alanine, a constituent of coenzyme A (CoA) and the phosphopantetheinyl prosthetic group of holo-acyl carrier protein. The first step in the fermentation is a CoA-transfer to β-alanine. Subsequently, the resulting β-alanyl-CoA is deaminated by the enzyme β-alanyl-CoA:ammonia lyase (Acl) to reversibly form ammonia and acrylyl-CoA. We have determined the crystal structure of Acl in its apo-form at a resolution of 0.97 {\AA} as well as in complex with CoA at a resolution of 1.59 {\AA}. The structures reveal that the enyzme belongs to a superfamily of proteins exhibiting a so called "hot dog fold" which is characterized by a five-stranded antiparallel β-sheet with a long α-helix packed against it. The functional unit of all "hot dog fold" proteins is a homodimer containing two equivalent substrate binding sites which are established by the dimer interface. In the case of Acl, three functional dimers combine to a homohexamer strongly resembling the homohexamer formed by YciA-like acyl-CoA thioesterases. Here, we propose an enzymatic mechanism based on the crystal structure of the Acl·CoA complex and molecular docking. Proteins 2014; 82:2041-2053. © 2014 Wiley Periodicals, Inc.}, language = {en} } @article{HuckPoghossianKerroumietal.2014, author = {Huck, Christina and Poghossian, Arshak and Kerroumi, Iman and Schusser, Sebastian and B{\"a}cker, Matthias and Zander, Willi and Schubert, J{\"u}rgen and Buniatyan, Vahe V. and Martirosyan, Norayr W. and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Multiparameter sensor chip with Barium Strontium Titanate as multipurpose material}, series = {Electroanalysis}, volume = {26}, journal = {Electroanalysis}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-4109 (E-Journal); 1040-0397 (Print)}, doi = {10.1002/elan.201400076}, pages = {980 -- 987}, year = {2014}, abstract = {It is well known that biochemical and biotechnological processes are strongly dependent and affected by a variety of physico-chemical parameters such as pH value, temperature, pressure and electrolyte conductivity. Therefore, these quantities have to be monitored or controlled in order to guarantee a stable process operation, optimization and high yield. In this work, a sensor chip for the multiparameter detection of three physico-chemical parameters such as electrolyte conductivity, pH and temperature is realized using barium strontium titanate (BST) as multipurpose material. The chip integrates a capacitively coupled four-electrode electrolyte-conductivity sensor, a capacitive field-effect pH sensor and a thin-film Pt-temperature sensor. Due to the multifunctional properties of BST, it is utilized as final outermost coating layer of the processed sensor chip and serves as passivation and protection layer as well as pH-sensitive transducer material at the same time. The results of testing of the individual sensors of the developed multiparameter sensor chip are presented. In addition, a quasi-simultaneous multiparameter characterization of the sensor chip in buffer solutions with different pH value and electrolyte conductivity is performed. To study the sensor behavior and the suitability of BST as multifunctional material under harsh environmental conditions, the sensor chip was exemplarily tested in a biogas digestate.}, language = {en} } @article{BaeckerKramerHucketal.2014, author = {B{\"a}cker, Matthias and Kramer, F. and Huck, Christina and Poghossian, Arshak and Bratov, A. and Abramova, N. and Sch{\"o}ning, Michael Josef}, title = {Planar and 3D interdigitated electrodes for biosensing applications: The impact of a dielectric barrier on the sensor properties}, series = {Physica Status Solidi (A) - Applications and Materials Science}, volume = {211}, journal = {Physica Status Solidi (A) - Applications and Materials Science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330416}, pages = {1357 -- 1363}, year = {2014}, abstract = {Planar and three-dimensional (3D) interdigitated electrodes (IDE) with electrode digits separated by an insulating barrier of different heights were electrochemically characterized and compared in terms of their sensing properties. Due to the impact of the surface resistance, both types of IDE structures display a non-linear behavior in low-ionic strength solutions. The experimental data were fitted to an electrical equivalent circuit and interpreted taking into account the surface-charge-governed properties. The effect of a charged polyelectrolyte layer electrostatically assembled onto the sensor surface on the surface resistance in solutions with different KCl concentration is studied. In case of the same electrode footprint, 3D-IDEs show a larger cell constant and a higher sensitivity to molecular adsorption than that of planar IDEs. The obtained results demonstrate the potential of 3D-IDEs as a new transducer structure for a direct label-free sensing of charged molecules.}, language = {en} } @article{HuckPoghossianBaeckeretal.2014, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Chaudhuri, S. and Zander, W. and Schubert, J. and Begoyan, V. K. and Buniatyan, V. V. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Capacitively coupled electrolyte-conductivity sensor based on high-k material of barium strontium titanate}, series = {Sensors and actuators. B: Chemical}, journal = {Sensors and actuators. B: Chemical}, number = {198}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.02.103}, pages = {102 -- 109}, year = {2014}, language = {en} } @article{SchoeningBiselliSelmeretal.2012, author = {Sch{\"o}ning, Michael Josef and Biselli, Manfred and Selmer, Thorsten and {\"O}hlschl{\"a}ger, Peter and Baumann, Marcus and F{\"o}rster, Arnold and Poghossian, Arshak}, title = {Forschung „zwischen" den Disziplinen: das Institut f{\"u}r Nano- und Biotechnologien}, series = {Analytik news : das Online-Labormagazin f{\"u}r Labor und Analytik}, volume = {Publ. online}, journal = {Analytik news : das Online-Labormagazin f{\"u}r Labor und Analytik}, publisher = {Dr. Beyer Internet-Beratung}, address = {Ober-Ramstadt}, pages = {11 Seiten}, year = {2012}, abstract = {"Biologie trifft Mikroelektronik", das Motto des Instituts f{\"u}r Nano- und Biotechnologien (INB) an der FH Aachen, unterstreicht die zunehmende Bedeutung interdisziplin{\"a}r gepr{\"a}gter Forschungsaktivit{\"a}ten. Der thematische Zusammenschluss grundst{\"a}ndiger Disziplinen, wie die Physik, Elektrotechnik, Chemie, Biologie sowie die Materialwissenschaften, l{\"a}sst neue Forschungsgebiete entstehen, ein herausragendes Beispiel hierf{\"u}r ist die Nanotechnologie: Hier werden neue Werkstoffe und Materialien entwickelt, einzelne Nanopartikel oder Molek{\"u}le und deren Wechselwirkung untersucht oder Schichtstrukturen im Nanometerbereich aufgebaut, die neue und vorher nicht bekannte Eigenschaften hervorbringen. Vor diesem Hintergrund b{\"u}ndelt das im Jahre 2006 gegr{\"u}ndete INB die an der FH Aachen vorhandenen Kompetenzen von derzeit insgesamt sieben Laboratorien auf den Gebieten der Halbleitertechnik und Nanoelektronik, Nanostrukturen und DNA-Sensorik, der Chemo- und Biosensorik, der Enzymtechnologie, der Mikrobiologie und Pflanzenbiotechnologie, der Zellkulturtechnik, sowie der Roten Biotechnologie synergetisch. In der Nano- und Biotechnologie steckt außergew{\"o}hnliches Potenzial! Nicht zuletzt deshalb stellen sich die Forscher der Herausforderung, in diesem Bereich gemeinsam zu forschen und Schnittstellen zu nutzen, um so bei der Gestaltung neuartiger Ideen und Produkte mitzuwirken, die zuk{\"u}nftig unser allt{\"a}gliches Leben ver{\"a}ndern werden. Im Folgenden werden die verschiedenen Forschungsbereiche kurz zusammenfassend vorgestellt und vorhandene Interaktionen anhand von exemplarisch ausgew{\"a}hlten, aktuellen Forschungsprojekten skizziert.}, language = {de} } @article{TakenagaBiselliSchnitzleretal.2014, author = {Takenaga, Shoko and Biselli, Manfred and Schnitzler, Thomas and {\"O}hlschl{\"a}ger, Peter and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Toward multi-analyte bioarray sensors: LAPS-based on-chip determination of a Michaelis-Menten-like kinetics for cell culturing}, series = {Physica status solidi A : Applications and materials science}, volume = {211}, journal = {Physica status solidi A : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330464}, pages = {1410 -- 1415}, year = {2014}, abstract = {The metabolic activity of Chinese hamster ovary (CHO) cells was observed using a light-addressable potentiometric sensor (LAPS). The dependency toward different glucose concentrations (17-200 mM) follows a Michaelis-Menten kinetics trajectory with Kₘ = 32.8 mM, and the obtained Kₘ value in this experiment was compared with that found in literature. In addition, the pH shift induced by glucose metabolism of tumor cells transfected with the HPV-16 genome (C3 cells) was successfully observed. These results indicate the possibility to determine the tumor cells metabolism with a LAPS-based measurement device.}, language = {en} } @article{WuBronderPoghossianetal.2014, author = {Wu, Chunsheng and Bronder, Thomas and Poghossian, Arshak and Werner, Frederik and B{\"a}cker, Matthias and Sch{\"o}ning, Michael Josef}, title = {Label-free electrical detection of DNA with a multi-spot LAPS: First step towards light-addressable DNA chips}, series = {Physica status solidi A : Applications and materials science}, volume = {211}, journal = {Physica status solidi A : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Journal); 1862-6319 (E-Journal); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201330442}, pages = {1423 -- 1428}, year = {2014}, abstract = {A multi-spot (4 × 4 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure has been applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. Single-stranded probe ssDNA molecules (20 bases) were covalently immobilized onto the silanized SiO2 gate surface. The unspecific adsorption of mismatch ssDNA on the MLAPS gate surface was blocked by bovine serum albumin molecules. To reduce the screening effect and to achieve a high sensor signal, the measurements were performed in a low ionic-strength solution. The photocurrent-voltage (I-V) curves were simultaneously recorded on all 16 spots after each surface functionalization step. Large shifts of I-V curves of 25 mV were registered after the DNA immobilization and hybridization event. In contrast, a small potential shift (∼5 mV) was observed in case of mismatch ssDNA, revealing good specificity of the sensor. The obtained results demonstrate the potential of the MLAPS as promising transducer platform for the multi-spot label-free electrical detection of DNA molecules by their intrinsic molecular charge.}, language = {en} } @article{GuoSekiMiyamotoetal.2014, author = {Guo, Yuanyuan and Seki, Kosuke and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Novel photoexcitation method for light-addressable potentiometric sensor with higher spatial resolution}, series = {Applied physics express : APEX}, volume = {7}, journal = {Applied physics express : APEX}, number = {6}, publisher = {IOP}, address = {Bristol}, issn = {1882-0786 (E-Journa); 1882-0778 (Print)}, doi = {10.7567/APEX.7.067301}, pages = {067301-4}, year = {2014}, abstract = {A novel photoexcitation method for the light-addressable potentiometric sensor (LAPS) is proposed to achieve a higher spatial resolution of chemical images. The proposed method employs a combined light source that consists of a modulated light probe, which generates the alternating photocurrent signal, and a ring of constant illumination surrounding it. The constant illumination generates a sheath of carriers with increased concentration which suppresses the spread of photocarriers by enhanced recombination. A device simulation was carried out to verify the effect of constant illumination on the spatial resolution, which demonstrated that a higher spatial resolution can be obtained.}, language = {en} } @article{WhiteheadOehlschlaegerAlmajhdietal.2014, author = {Whitehead, Mark and {\"O}hlschl{\"a}ger, Peter and Almajhdi, Fahad N. and Alloza, Leonor and Marz{\´a}bal, Pablo and Meyers, Ann E. and Hitzeroth, Inga I. and Rybicki, Edward P.}, title = {Human papillomavirus (HPV) type 16 E7 protein bodies cause tumour regression in mice}, series = {BMC cancer}, journal = {BMC cancer}, number = {14:367}, publisher = {BioMed Central}, address = {London}, issn = {1471-2407}, doi = {10.1186/1471-2407-14-367}, pages = {1 -- 15}, year = {2014}, language = {en} } @incollection{PoghossianWeilandSchoening2014, author = {Poghossian, Arshak and Weiland, Maryam and Sch{\"o}ning, Michael Josef}, title = {Nanoplate field-effect capacitors: a new transducer structure for multiparameter (bio-)chemical sensing}, series = {Multisensor system for chemical analysis : materials and sensors}, booktitle = {Multisensor system for chemical analysis : materials and sensors}, editor = {Lvova, Larisa and Kirsanov, Dmitry and di Natale, Corrado and Legin, Audrey}, edition = {1}, publisher = {Jenny Stanford Publishing}, address = {Singapore}, isbn = {978-981-4411-15-8 ; 978-981-4411-16-5}, doi = {10.1201/b15491-11}, pages = {333 -- 373}, year = {2014}, abstract = {An array of electrically isolated nanoplate field-effect silicon-on-insulator (SOI) capacitors as a new transducer structure for multiparameter (bio-)chemical sensing is presented. The proposed approach allows addressable biasing and electrical readout of multiple nanoplate field-effect capacitive (bio-)chemical sensors on the same SOI chip, as well as differential-mode measurements. The realized sensor chip has been applied for pH and penicillin concentration measurements, electrical monitoring of polyelectrolyte multilayer formation, and the label-free electrical detection of consecutive deoxyribonucleic acid (DNA) hybridization and denaturation events.}, language = {en} } @article{WagnerDollSchoening2014, author = {Wagner, Patrick and Doll, Theodor and Sch{\"o}ning, Michael Josef}, title = {Engineering of functional interfaces / Patrick Wagner ; Theodor Doll ; Michael J. Sch{\"o}ning (eds.)}, series = {Physica status solidi (A) : Applications and materials science}, volume = {211}, journal = {Physica status solidi (A) : Applications and materials science}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1521-396X (E-Book); 1862-6319 (E-Book); 0031-8965 (Print); 1862-6300 (Print)}, doi = {10.1002/pssa.201470241}, pages = {1339 -- 1339}, year = {2014}, language = {en} } @article{KueppersSteffenHellmuthetal.2014, author = {K{\"u}ppers, Tobias and Steffen, Victoria and Hellmuth, Hendrik and O'Connell, Timothy and Bongaerts, Johannes and Maurer, Karl-Heinz and Wiechert, Wolfgang}, title = {Developing a new production host from a blueprint: Bacillus pumilus as an industrial enzyme producer}, series = {Microbial cell factories}, volume = {13}, journal = {Microbial cell factories}, publisher = {BioMed Central}, address = {London}, issn = {1475-2859 (E-Journal)}, doi = {10.1186/1475-2859-13-46}, pages = {Article No. 46}, year = {2014}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Theoretical study and simulation of light-addressable potentiometric sensors}, series = {Physica status solidi (A) : applications and materials}, volume = {211}, journal = {Physica status solidi (A) : applications and materials}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0031-8965}, doi = {10.1002/pssa.201330354}, pages = {1467 -- 1472}, year = {2014}, abstract = {The light-addressable potentiometric sensor (LAPS) is a semiconductor-based potentiometric sensor using a light probe with an ability of detecting the concentration of biochemical species in a spatially resolved manner. As an important biomedical sensor, research has been conducted to improve its performance, for instance, to realize high-speed measurement. In this work, the idea of facilitating the device-level simulation, instead of using an equivalent-circuit model, is presented for detailed analysis and optimization of the performance of the LAPS. Both carrier distribution and photocurrent response have been simulated to provide new insight into both amplitude-mode and phase-mode operations of the LAPS. Various device parameters can be examined to effectively design and optimize the LAPS structures and setups for enhanced performance.}, language = {en} } @phdthesis{Werner2014, author = {Werner, Frederik}, title = {Development of light-addressable potentiometric sensor systems and their applications in biotechnological environments}, pages = {XI, 149 S.}, year = {2014}, language = {en} } @article{GuoMiyamotoWagneretal.2014, author = {Guo, Yuanyuan and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Device simulation of the light-addressable potentiometric sensor for the investigation of the spatial resolution}, series = {Sensors and actuators B: Chemical}, volume = {204}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.08.016}, pages = {659 -- 665}, year = {2014}, abstract = {As a semiconductor-based electrochemical sensor, the light-addressable potentiometric sensor (LAPS) can realize two dimensional visualization of (bio-)chemical reactions at the sensor surface addressed by localized illumination. Thanks to this imaging capability, various applications in biochemical and biomedical fields are expected, for which the spatial resolution is critically significant. In this study, therefore, the spatial resolution of the LAPS was investigated in detail based on the device simulation. By calculating the spatiotemporal change of the distributions of electrons and holes inside the semiconductor layer in response to a modulated illumination, the photocurrent response as well as the spatial resolution was obtained as a function of various parameters such as the thickness of the Si substrate, the doping concentration, the wavelength and the intensity of illumination. The simulation results verified that both thinning the semiconductor substrate and increasing the doping concentration could improve the spatial resolution, which were in good agreement with known experimental results and theoretical analysis. More importantly, new findings of interests were also obtained. As for the dependence on the wavelength of illumination, it was found that the known dependence was not always the case. When the Si substrate was thick, a longer wavelength resulted in a higher spatial resolution which was known by experiments. When the Si substrate was thin, however, a longer wavelength of light resulted in a lower spatial resolution. This finding was explained as an effect of raised concentration of carriers, which reduced the thickness of the space charge region. The device simulation was found to be helpful to understand the relationship between the spatial resolution and device parameters, to understand the physics behind it, and to optimize the device structure and measurement conditions for realizing higher performance of chemical imaging systems.}, language = {en} } @article{ReisertGeisslerWeileretal.2015, author = {Reisert, Steffen and Geissler, H. and Weiler, C. and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {Multiple sensor-type system for monitoring the microbicidal effectiveness of aseptic sterilisation processes}, series = {Food control}, volume = {47}, journal = {Food control}, issn = {1873-7129 (E-Journal); 0956-7135 (Print)}, doi = {10.1016/j.foodcont.2014.07.063}, pages = {615 -- 622}, year = {2015}, abstract = {The present work describes a novel multiple sensor-type system for the real-time analysis of aseptic sterilisation processes employing gaseous hydrogen peroxide (H2O2) as a sterilant. The inactivation kinetics of Bacillus atrophaeus by gaseous H2O2 have been investigated by means of a methodical calibration experiment, taking into account the process variables H2O2 concentration, humidity and gas temperature. It has been found that the microbicidal effectiveness at H2O2 concentrations above 2\% v/v is largely determined by the concentration itself, while at lower H2O2 concentrations, the gas temperature and humidity play a leading role. Furthermore, the responses of different types of gas sensors towards the influencing factors of the sterilisation process have been analysed within the same experiment. Based on a correlation established between the inactivation kinetics and the sensor responses, a calorimetric H2O2 sensor and a metal-oxide semiconductor (MOX) sensor have been identified as possible candidates for monitoring the microbicidal effectiveness of aseptic sterilisation processes employing gaseous H2O2. Therefore, two linear models that describe the relationship between sensor response and microbicidal effectiveness have been proposed.}, language = {en} } @article{KhaydukovaZadorozhnayaKirsanovetal.2014, author = {Khaydukova, M. M. and Zadorozhnaya, O. A. and Kirsanov, D. O. and Iken, Heiko and Rolka, David and Sch{\"o}ning, Michael Josef and Babain, V. A. and Vlasov, Yu. G. and Legin, A. V.}, title = {Multivariate processing of atomic-force microscopy images for detection of the response of plasticized polymeric membranes}, series = {Russian journal of applied chemistry}, volume = {87}, journal = {Russian journal of applied chemistry}, number = {3}, publisher = {Springer}, address = {Dordrecht}, issn = {1608-3296 (E-Journal); 1070-4272 (Print)}, doi = {10.1134/S1070427214030112}, pages = {307 -- 314}, year = {2014}, abstract = {The possibility of using the atomic-force microscopy as a method for detection of the analytical signal from plasticized polymeric sensor membranes was analyzed. The surfaces of cadmium-selective membranes based on two polymeric matrices were examined. The digital images were processed with multivariate image analysis techniques. A correlation was found between the surface profile of an ion-selective membrane and the concentration of the ion in solution.}, language = {en} } @inproceedings{BuniatyanHuckPoghossianetal.2014, author = {Buniatyan, V. V. and Huck, Christina and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Rustamyan, L. G. and Hovnikyan, H. H.}, title = {Equivalent circuit and optimization of impedance characteristics of an electrolyte conductivity sensor}, series = {Proceedings of State Engineering University Armenia : Series Information technologies, electronics, radio engineering}, volume = {Iss. 17}, booktitle = {Proceedings of State Engineering University Armenia : Series Information technologies, electronics, radio engineering}, number = {No. 1}, pages = {69 -- 76}, year = {2014}, language = {en} } @article{MartinezJakobTuetal.2013, author = {Martinez, Ronny and Jakob, Felix and Tu, Ran and Siegert, Petra and Maurer, Karl-Heinz and Schwaneberg, Ulrich}, title = {Increasing activity and thermal resistance of Bacillus gibsonii alkaline protease (BgAP) by directed evolution}, series = {Biotechnology and bioengineering}, volume = {Vol. 110}, journal = {Biotechnology and bioengineering}, number = {Iss. 3}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0290 (E-Journal); 0006-3592 (Print); 0368-1467 (Print)}, pages = {711 -- 720}, year = {2013}, language = {en} } @article{RibitschHeumannKarletal.2012, author = {Ribitsch, D. and Heumann, S. and Karl, W. and Gerlach, J. and Leber, R. and Birner-Gruenberger, R. and Gruber, K. and Eiteljoerg, I. and Remler, P. and Siegert, Petra and Lange, J. and Maurer, Karl-Heinz and Berg, G. and Guebitz, G. M. and Schwab, H.}, title = {Extracellular serine proteases from Stenotrophomonas maltophilia: Screening, isolation and heterologous expression in E. coli}, series = {Journal of biotechnology}, volume = {157}, journal = {Journal of biotechnology}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2011.09.025}, pages = {140 -- 147}, year = {2012}, abstract = {A large strain collection comprising antagonistic bacteria was screened for novel detergent proteases. Several strains displayed protease activity on agar plates containing skim milk but were inactive in liquid media. Encapsulation of cells in alginate beads induced protease production. Stenotrophomonas maltophilia emerged as best performer under washing conditions. For identification of wash-active proteases, four extracellular serine proteases called StmPr1, StmPr2, StmPr3 and StmPr4 were cloned. StmPr2 and StmPr4 were sufficiently overexpressed in E. coli. Expression of StmPr1 and StmPr3 resulted in unprocessed, insoluble protein. Truncation of most of the C-terminal domain which has been identified by enzyme modeling succeeded in expression of soluble, active StmPr1 but failed in case of StmPr3. From laundry application tests StmPr2 turned out to be a highly wash-active protease at 45 °C. Specific activity of StmPr2 determined with suc-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide as the substrate was 17 ± 2 U/mg. In addition we determined the kinetic parameters and cleavage preferences of protease StmPr2.}, language = {en} } @article{RibitschKarlBirnerGruenbergeretal.2010, author = {Ribitsch, D. and Karl, W. and Birner-Gruenberger, R. and Gruber, K. and Eiteljoerg, I. and Remler, P. and Wieland, S. and Siegert, Petra and Maurer, Karl-Heinz and Schwab, H.}, title = {C-terminal truncation of a metagenome-derived detergent protease for effective expression in E. coli}, series = {Journal of biotechnology}, volume = {150}, journal = {Journal of biotechnology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2010.09.947}, pages = {408 -- 416}, year = {2010}, abstract = {Recently, a new alkaline protease named HP70 showing highest homology to extracellular serine proteases of Stenotrophomonas maltophilia and Xanthomonas campestris was found in the course of a metagenome screening for detergent proteases (Niehaus et al., submitted for publication). Attempts to efficiently express the enzyme in common expression hosts had failed. This study reports on the realization of overexpression in Escherichia coli after structural modification of HP70. Modelling of HP70 resulted in a two-domain structure, comprising the catalytic domain and a C-terminal domain which includes about 100 amino acids. On the basis of the modelled structure the enzyme was truncated by deletion of most of the C-terminal domain yielding HP70-C477. This structural modification allowed effective expression of active enzyme using E. coli BL21-Gold as the host. Specific activity of HP70-C477 determined with suc-l-Ala-l-Ala-l-Pro-l-Phe-p-nitroanilide as the substrate was 30 ± 5 U/mg compared to 8 ± 1 U/mg of the native enzyme. HP70-C477 was most active at 40 °C and pH 7-11; these conditions are prerequisite for a potential application as detergent enzyme. Determination of kinetic parameters at 40 °C and pH = 9.5 resulted in KM = 0.23 ± 0.01 mM and kcat = 167.5 ± 3.6 s⁻¹. MS-analysis of peptide fragments obtained from incubation of HP70 and HP70-C477 with insulin B indicated that the C-terminal domain influences the cleavage preferences of the enzyme. Washing experiments confirmed the high potential of HP70-C477 as detergent protease.}, language = {en} } @article{SiegertMcLeishBaumannetal.2005, author = {Siegert, Petra and McLeish, Michael J. and Baumann, Martin and Iding, Hans and Kneen, Malea M. and Kenyon, George L. and Pohl, Martina}, title = {Exchanging the substrate specificities of pyruvate decarboxylase from Zymomonas mobilis and benzoylformate decarboxylase from Pseudomonas putida}, series = {Protein engineering, design, and selection : peds}, volume = {Vol. 18}, journal = {Protein engineering, design, and selection : peds}, number = {Iss. 7}, issn = {1460-213X (E-Journal); 1741-0134 (E-Journal); 0269-2139 (Print); 1741-0126 (Print)}, pages = {345 -- 357}, year = {2005}, language = {en} } @incollection{KirchnerReisertSchoening2014, author = {Kirchner, Patrick and Reisert, Steffen and Sch{\"o}ning, Michael Josef}, title = {Calorimetric gas sensors for hydrogen peroxide monitoring in aseptic food processes}, series = {Gas sensing fundamentals. (Springer Series on Chemical Sensors and Biosensors ; 15)}, booktitle = {Gas sensing fundamentals. (Springer Series on Chemical Sensors and Biosensors ; 15)}, publisher = {Springer}, address = {Heidelberg}, isbn = {978-3-642-54518-4 (Print) ; 978-3-642-54519-1 (Online)}, doi = {10.1007/5346_2013_51}, pages = {279 -- 309}, year = {2014}, abstract = {For the sterilisation of aseptic food packages it is taken advantage of the microbicidal properties of hydrogen peroxide (H2O2). Especially, when applied in vapour phase, it has shown high potential of microbial inactivation. In addition, it offers a high environmental compatibility compared to other chemical sterilisation agents, as it decomposes into oxygen and water, respectively. Due to a lack in sensory detection possibilities, a continuous monitoring of the H2O2 concentration was recently not available. Instead, the sterilisation efficacy is validated using microbiological tests. However, progresses in the development of calorimetric gas sensors during the last 7 years have made it possible to monitor the H2O2 concentration during operation. This chapter deals with the fundamentals of calorimetric gas sensing with special focus on the detection of gaseous hydrogen peroxide. A sensor principle based on a calorimetric differential set-up is described. Special emphasis is given to the sensor design with respect to the operational requirements under field conditions. The state-of-the-art regarding a sensor set-up for the on-line monitoring and secondly, a miniaturised sensor for in-line monitoring are summarised. Furthermore, alternative detection methods and a novel multi-sensor system for the characterisation of aseptic sterilisation processes are described.}, language = {en} } @incollection{SchoeningPoghossianGluecketal.2014, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak and Gl{\"u}ck, Olaf and Thust, Marion}, title = {Electrochemical methods for the determination of chemical variables in aqueous media}, series = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, booktitle = {Measurement, instrumentation, and sensors handbook / ed. by John G. Webster [u.a.] Vol. 2 : Electromagnetic, optical, radiation, chemical, and biomedical measurement}, publisher = {CRC Pr.}, address = {Boca Raton, Fla.}, isbn = {978-1-4398-4891-3}, pages = {55-1 -- 55-54}, year = {2014}, language = {en} } @article{BaeckerSchusserPoghossianetal.2014, author = {B{\"a}cker, Matthias and Schusser, Sebastian and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Multi-Parametererfassung mit siliziumbasiertem Sensorchip: Aus Drei mach Eins}, series = {GIT Labor-Fachzeitschrift}, journal = {GIT Labor-Fachzeitschrift}, number = {2}, publisher = {Wiley}, issn = {0016-3538}, pages = {28 -- 30}, year = {2014}, language = {de} } @inproceedings{HuckPoghossianBuniatyanetal.2014, author = {Huck, Christina and Poghossian, Arshak and Buniatyan, V. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter detection for supporting monitoring and control of biogas processes in agriculture}, series = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, booktitle = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, publisher = {VDE-Verl.}, address = {Berlin}, organization = {VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, isbn = {978-3-8007-3622-5}, pages = {1 -- 5}, year = {2014}, language = {en} } @inproceedings{WernerYoshinobuMiyamotoetal.2014, author = {Werner, Frederik and Yoshinobu, T. and Miyamoto, K. and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Semiconductor-based sensors for imaging of chemical processes}, series = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, booktitle = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, publisher = {VDE-Verl.}, address = {D{\"u}sseldorf}, organization = {VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, isbn = {978-3-8007-3622-5}, pages = {1 -- 5}, year = {2014}, language = {en} } @inproceedings{WuBronderPoghossianetal.2014, author = {Wu, Chunsheng and Bronder, Thomas and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {DNA-hybridization detection using light-addressable potentiometric sensor modified with gold layer}, series = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, booktitle = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, publisher = {VDE-Verl.}, address = {D{\"u}sseldorf}, organization = {VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, isbn = {978-3-8007-3622-5}, pages = {1 -- 4}, year = {2014}, language = {en} } @inproceedings{OberlaenderKirchnerKeusgenetal.2014, author = {Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Flexible polyimide-based calorimetric gas sensors for monitoring hy-drogen peroxide in sterilisation processes of aseptic filling machines}, series = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, booktitle = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, publisher = {VDE-Verl.}, address = {D{\"u}sseldorf}, organization = {VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, isbn = {978-3-8007-3622-5}, pages = {1 -- 4}, year = {2014}, language = {en} } @inproceedings{BaeckerSchusserLeinhosetal.2014, author = {B{\"a}cker, Matthias and Schusser, Sebastian and Leinhos, Marcel and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Sensor system for the monitoring of degradation processes of biodegradable biopolymers}, series = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, booktitle = {Sensoren und Messsysteme 2014 ; Beitr{\"a}ge der 17. GMA/ITG-Fachtagung vom 3. bis 4. Juni 2014 in N{\"u}rnberg. (ITG-Fachbericht ; 250)}, publisher = {VDE-Verl.}, address = {D{\"u}sseldorf}, organization = {VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik}, isbn = {978-3-8007-3622-5}, pages = {1 -- 4}, year = {2014}, language = {en} } @article{HandtkeVollandMethlingetal.2014, author = {Handtke, Stefan and Volland, Sonja and Methling, Karen and Albrecht, Dirk and Becher, D{\"o}rte and Nehls, Jenny and Bongaerts, Johannes and Maurer, Karl-Heinz and Lalk, Michael and Liesegang, Heiko and Voigt, Birgit and Daniel, Rolf and Hecker, Michael}, title = {Cell physiology of the biotechnological relevant bacterium Bacillus pumilus - An omics-based approach}, series = {Journal of Biotechnology}, journal = {Journal of Biotechnology}, number = {192(A)}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-4863 (E-Journal); 0168-1656 (Print)}, doi = {10.1016/j.jbiotec.2014.08.028}, pages = {204 -- 214}, year = {2014}, abstract = {Members of the species Bacillus pumilus get more and more in focus of the biotechnological industry as potential new production strains. Based on exoproteome analysis, B. pumilus strain Jo2, possessing a high secretion capability, was chosen for an omics-based investigation. The proteome and metabolome of B. pumilus cells growing either in minimal or complex medium was analyzed. In total, 1542 proteins were identified in growing B. pumilus cells, among them 1182 cytosolic proteins, 297 membrane and lipoproteins and 63 secreted proteins. This accounts for about 43\% of the 3616 proteins encoded in the B. pumilus Jo2 genome sequence. By using GC-MS, IP-LC/MS and H NMR methods numerous metabolites were analyzed and assigned to reconstructed metabolic pathways. In the genome sequence a functional secretion system including the components of the Sec- and Tat-secretion machinery was found. Analysis of the exoproteome revealed secretion of about 70 proteins with predicted secretion signals. In addition, selected production-relevant genome features such as restriction modification systems and NRPS clusters of B. pumilus Jo2 are discussed.}, language = {en} } @article{YoshinobuMiyamotoWagneretal.2015, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Recent developments of chemical imaging sensor systems based on the principle of the light-addressable potentiometric sensor}, series = {Sensors and actuators B: Chemical}, volume = {207, Part B}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.09.002}, pages = {926 -- 932}, year = {2015}, abstract = {The light-addressable potentiometric sensor (LAPS) is an electrochemical sensor with a field-effect structure to detect the variation of the Nernst potential at its sensor surface, the measured area on which is defined by illumination. Thanks to this light-addressability, the LAPS can be applied to chemical imaging sensor systems, which can visualize the two-dimensional distribution of a particular target ion on the sensor surface. Chemical imaging sensor systems are expected to be useful for analysis of reaction and diffusion in various electrochemical and biological samples. Recent developments of LAPS-based chemical imaging sensor systems, in terms of the spatial resolution, measurement speed, image quality, miniaturization and integration with microfluidic devices, are summarized and discussed.}, language = {en} } @article{SiqueiraMolinnusBegingetal.2014, author = {Siqueira, Jose R. and Molinnus, Denise and Beging, Stefan and Sch{\"o}ning, Michael Josef}, title = {Incorporating a hybrid urease-carbon nanotubes sensitive nanofilm on capacitive field-effect sensors for urea detection}, series = {Analytical chemistry}, volume = {86}, journal = {Analytical chemistry}, number = {11}, publisher = {ACS Publications}, address = {Columbus}, issn = {1520-6882 (E-Journal); 0003-2700 (Print); 0096-4484 (Print)}, doi = {10.1021/ac500458s}, pages = {5370 -- 5375}, year = {2014}, abstract = {The ideal combination among biomolecules and nanomaterials is the key for reaching biosensing units with high sensitivity. The challenge, however, is to find out a stable and sensitive film architecture that can be incorporated on the sensor's surface. In this paper, we report on the benefits of incorporating a layer-by-layer (LbL) nanofilm of polyamidoamine (PAMAM) dendrimer and carbon nanotubes (CNTs) on capacitive electrolyte-insulator-semiconductor (EIS) field-effect sensors for detecting urea. Three sensor arrangements were studied in order to investigate the adequate film architecture, involving the LbL film with the enzyme urease: (i) urease immobilized directly onto a bare EIS [EIS-urease] sensor; (ii) urease atop the LbL film over the EIS [EIS-(PAMAM/CNT)-urease] sensor; and (iii) urease sandwiched between the LbL film and another CNT layer [EIS-(PAMAM/CNT)-urease-CNT]. The surface morphology of all three urea-based EIS biosensors was investigated by atomic force microscopy (AFM), while the biosensing abilities were studied by means of capacitance-voltage (C/V) and dynamic constant-capacitance (ConCap) measureaments at urea concentrations ranging from 0.1 mM to 100 mM. The EIS-urease and EIS-(PAMAM/CNT)-urease sensors showed similar sensitivity (∼18 mV/decade) and a nonregular signal behavior as the urea concentration increased. On the other hand, the EIS-(PAMAM/CNT)-urease-CNT sensor exhibited a superior output signal performance and higher sensitivity of about 33 mV/decade. The presence of the additional CNT layer was decisive to achieve a urea based EIS sensor with enhanced properties. Such sensitive architecture demonstrates that the incorporation of an adequate hybrid enzyme-nanofilm as sensing unit opens new prospects for biosensing applications using the field-effect sensor platform.}, language = {en} } @article{PoghossianBaeckerMayeretal.2015, author = {Poghossian, Arshak and B{\"a}cker, Matthias and Mayer, Dirk and Sch{\"o}ning, Michael Josef}, title = {Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids}, series = {Nanoscale}, journal = {Nanoscale}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, issn = {2040-3372 (E-Journal); 2040-3364 (Print)}, doi = {10.1039/C4NR05987E}, pages = {1023 -- 1031}, year = {2015}, language = {en} } @article{SchusserPoghossianBaeckeretal.2015, author = {Schusser, Sebastian and Poghossian, Arshak and B{\"a}cker, Matthias and Krischer, M. and Leinhos, Marcel and Wagner, P. and Sch{\"o}ning, Michael Josef}, title = {An application of field-effect sensors for in-situ monitoring of degradation of biopolymers}, series = {Sensors and actuators B: Chemical}, volume = {207, Part B}, journal = {Sensors and actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3077 (E-Journal); 0925-4005 (Print)}, doi = {10.1016/j.snb.2014.10.058}, pages = {954 -- 959}, year = {2015}, abstract = {The characterization of the degradation kinetics of biodegradable polymers is mandatory with regard to their proper application. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) field-effect sensors have been applied for in-situ monitoring of the pH-dependent degradation kinetics of the commercially available biopolymer poly(d,l-lactic acid) (PDLLA) in buffer solutions from pH 3 to pH 13. PDLLA films of 500 nm thickness were deposited on the surface of an Al-p-Si-SiO2-Ta2O5 structure from a polymer solution by means of spin-coating method. The PMEIS sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. A faster degradation has been observed for PDLLA films exposed to alkaline solutions (pH 9, pH 11 and pH 13).}, language = {en} } @article{MiyamotoSekiWagneretal.2014, author = {Miyamoto, K. and Seki, K. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, T.}, title = {Enhancement of the spatial resolution of the chemical imaging sensor by a hybrid fiber-optic illumination}, series = {Procedia Engineering}, volume = {87}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2014.11.563}, pages = {612 -- 615}, year = {2014}, abstract = {The chemical imaging sensor, which is based on the principle of the light-addressable potentiometric sensor (LAPS), is a powerful tool to visualize the spatial distribution of chemical species on the sensor surface. The spatial resolution of this sensor depends on the diffusion of photocarriers excited by a modulated light. In this study, a novel hybrid fiber-optic illumination was developed to enhance the spatial resolution. It consists of a modulated light probe to generate a photocurrent signal and a ring of constant light, which suppresses the lateral diffusion of minority carriers excited by the modulated light. It is demonstrated that the spatial resolution was improved from 92 μm to 68 μm.}, language = {en} } @inproceedings{KloockSchoening2007, author = {Kloock, Joachim P. and Sch{\"o}ning, Michael Josef}, title = {Heavy metal detection with semiconductor devices based on PLD-prepared chalcogenide glass thin films}, series = {Armenian Journal of Physics}, booktitle = {Armenian Journal of Physics}, issn = {1829-1171}, pages = {95 -- 98}, year = {2007}, language = {en} } @article{MuribYeapMartensetal.2015, author = {Murib, M. S. and Yeap, W. S. and Martens, D. and Liu, X. and Bienstman, P. and Fahlman, M. and Sch{\"o}ning, Michael Josef and Michiels, L. and Haenen, K. and Serpeng{\"u}zel, A. and Wagner, Patrick}, title = {Photonic studies on polymer-coated sapphire-spheres : a model system for biological ligands}, series = {Sensors and actuators A: Physical}, volume = {222}, journal = {Sensors and actuators A: Physical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-3069 (E-Journal); 0924-4247 (Print)}, doi = {10.1016/j.sna.2014.11.024}, pages = {212 -- 219}, year = {2015}, abstract = {In this study we show an optical biosensor concept, based on elastic light scattering from sapphire microspheres. Transmitted and elastic scattering intensity of the microspheres (radius 500 μm, refractive index 1.77) on an optical fiber half coupler is analyzed at 1510 nm. The 0.43 nm angular mode spacing of the resonances is comparable to the angular mode spacing value estimated using the optical size of the microsphere. The spectral linewidths of the resonances are in the order of 0.01 nm, which corresponds to quality factors of approximately 105. A polydopamine layer is used as a functionalizing agent on sapphire microspherical resonators in view of biosensor implementation. The varying layer thickness on the microsphere is determined as a function of the resonance wavelength shift. It is shown that polymer functionalization has a minor effect on the quality factor. This is a promising step toward the development of an optical biosensor.}, language = {en} } @inproceedings{NaetherPoghossianPlatenetal.2006, author = {N{\"a}ther, Niko and Poghossian, Arshak and Platen, J. and Yoshinobu, T. and Koudelka-Hep, M. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter sensing of both physical and (bio-)chemical quantities using the same transducer principle}, series = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, booktitle = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, address = {Warsaw}, pages = {172 -- 181}, year = {2006}, language = {en} } @inproceedings{KloockSchubertErmelenkoetal.2006, author = {Kloock, Joachim P. and Schubert, J. and Ermelenko, Y. and Vlasov, Y. G. and Bratov, A. and Sch{\"o}ning, Michael Josef}, title = {Thin-film sensors with chalcogenide glass materials - a general survey}, series = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, booktitle = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, address = {Warsaw}, pages = {92 -- 97}, year = {2006}, language = {en} } @inproceedings{BegingPoghossianMlyneketal.2010, author = {Beging, Stefan and Poghossian, Arshak and Mlynek, D. and Hataihimakul, S. and Pedraza, A. and Dhawan, S. and Laube, N. and Kleinen, L. and Baldsiefen, G. and Busch, H. and Sch{\"o}ning, Michael Josef}, title = {Ion-selective sensors for the determination of the risk of urinary stone formation}, series = {Micro- and Nanosystems in biochemical diagnosis : Principles and applications}, booktitle = {Micro- and Nanosystems in biochemical diagnosis : Principles and applications}, address = {Warsaw}, pages = {74 -- 80}, year = {2010}, language = {en} } @inproceedings{WeilPoghossianSchoeningetal.2012, author = {Weil, M. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef and Cherstvy, A.}, title = {Electrical monitoring of layer-by-layer adsorption of oppositely charged macromolecules by means of capacitive field-effect devices}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/P2.5.2}, pages = {1575 -- 1578}, year = {2012}, language = {en} } @inproceedings{BohrnMuchaWerneretal.2012, author = {Bohrn, Ulrich and Mucha, Andreas and Werner, Frederik and St{\"u}tz, Evamaria and B{\"a}cker, Matthias and Krumbe, Christoph and Schienle, Meinrad and Fleischer, Maximilian and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Detection of toxic chromium species in water using cellbased sensor systems}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/P2.1.14}, pages = {1364 -- 1367}, year = {2012}, language = {en} } @article{SchoeningBaecker2012, author = {Sch{\"o}ning, Michael Josef and B{\"a}cker, Matthias}, title = {Chip-basierte Sensoren f{\"u}r die Biotechnik}, volume = {13}, number = {2}, publisher = {BIOCOM}, address = {Berlin}, issn = {1611-0854}, year = {2012}, language = {de} } @inproceedings{SchoeningAbouzarWagneretal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Wagner, Torsten and N{\"a}ther, Niko and Rolka, David and Yoshinobu, Tatsuo and Kloock, Joachim P. and Turek, Monika and Ingebrandt, Sven and Poghossian, Arshak}, title = {A semiconductor-based field-effect platform for (bio-)chemical and physical sensors: From capacitive EIS sensors and LAPS over ISFETs to nano-scale devices}, series = {MRS Proceedings}, booktitle = {MRS Proceedings}, doi = {10.1557/PROC-0952-F08-02}, pages = {1 -- 9}, year = {2006}, language = {en} } @inproceedings{MoritzYoshinobuFingeretal.2003, author = {Moritz, Werner and Yoshinobu, Tatsuo and Finger, Friedhelm and Krause, Steffi and Sch{\"o}ning, Michael Josef}, title = {Amorphous silicon as semiconductor material for high resolution LAPS}, series = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, booktitle = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, pages = {48 -- 49}, year = {2003}, language = {en} } @inproceedings{ErmelenkoYoshinobuMourzinaetal.2003, author = {Ermelenko, Y. and Yoshinobu, T. and Mourzina, Y. and Sch{\"o}ning, Michael Josef and Vlasov, Y. and Iwasaki, H.}, title = {A multisensor based on laser scanned silicon transducer (LSST): development and properties}, series = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, booktitle = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, pages = {72 -- 73}, year = {2003}, language = {en} } @inproceedings{YoshinobuSchoeningFingeretal.2003, author = {Yoshinobu, T. and Sch{\"o}ning, Michael Josef and Finger, F. and Moritz, W. and Iwasaki, H.}, title = {Thin-film a-Si LAPS : Preparation and pH sensitivity}, series = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, booktitle = {Eurosensors XVII : the 17th European Conference on Solid-State Transducers ; University of Minho, Guimar{\~a}es, Portugal, September 21 - 24, 2003}, pages = {88 -- 89}, year = {2003}, language = {en} } @inproceedings{BohrnStuetzFleischeretal.2012, author = {Bohrn, Ulrich and St{\"u}tz, Evamaria and Fleischer, Maximilian and Sch{\"o}ning, Michael Josef and Wagner, Patrick}, title = {Living cell-based gas sensor system for the detection of acetone in air}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/3.2.3}, pages = {269 -- 272}, year = {2012}, language = {en} } @inproceedings{TakenagaWernerSawadaetal.2012, author = {Takenaga, Shoko and Werner, Frederik and Sawada, Kazuaki and Sch{\"o}ning, Michael Josef}, title = {Comparison of label-free ACh image sensors based on CCD and LAPS}, isbn = {978-3-9813484-2-2}, doi = {10.5162/IMCS2012/4.2.6}, pages = {356 -- 359}, year = {2012}, language = {en} } @inproceedings{KloockMorenoHuachupomaetal.2005, author = {Kloock, Joachim P. and Moreno, Lia and Huachupoma, S. and Xu, J. and Wagner, Torsten and Bratov, A. and Doll, T. and Vlasov, Y. and Sch{\"o}ning, Michael Josef}, title = {Halbleiterbasierte Schwermetallsensorik auf der Basis von Chalkogenidgl{\"a}sern f{\"u}r zuk{\"u}nftige „Lab on Chip"-Anwendungen}, series = {7. Dresdner Sensor-Symposium - Neue Herausforderungen und Anwendungen in der Sensortechnik}, booktitle = {7. Dresdner Sensor-Symposium - Neue Herausforderungen und Anwendungen in der Sensortechnik}, editor = {Gerlach, Gerald}, publisher = {TUDpress, Verl. der Wissenschaften}, address = {Dresden}, isbn = {3-938863-29-3}, pages = {221 -- 224}, year = {2005}, language = {de} } @inproceedings{SchoeningAbouzarHanetal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Han, Y. and Ingebrandt, S. and Offenh{\"a}usser, A. and Poghossian, Arshak}, title = {Markierungsfreie DNA-Detektion mit Silizium-Feldeffektsensoren - Messeffekte oder Artefakte?}, series = {Sensoren und Mess-Systeme 2006 : Vortr{\"a}ge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau}, booktitle = {Sensoren und Mess-Systeme 2006 : Vortr{\"a}ge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau}, publisher = {VDE Verl.}, address = {Berlin}, isbn = {3-8007-2939-3}, pages = {443 -- 446}, year = {2006}, language = {de} } @inproceedings{PlatenPoghossianSchoening2006, author = {Platen, J. and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Pr{\"a}paration von selbstjustierenden Nanostrukturen mittels Schichtausdehnungstechnik}, series = {Sensoren und Mess-Systeme 2006 : Vortr{\"a}ge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau}, booktitle = {Sensoren und Mess-Systeme 2006 : Vortr{\"a}ge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau}, publisher = {VDE Verl.}, address = {Berlin}, isbn = {3-8007-2939-3}, pages = {277 -- 280}, year = {2006}, language = {de} } @inproceedings{WagnerYoshinobuOttoetal.2006, author = {Wagner, Torsten and Yoshinobu, T. and Otto, R. and Rao, C. and Molina, R. and Sch{\"o}ning, Michael Josef}, title = {Licht-adressierbare potentiometrische Sensorsysteme - Konzepte und Anwendungen}, series = {Sensoren und Mess-Systeme 2006 : Vortr{\"a}ge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau}, booktitle = {Sensoren und Mess-Systeme 2006 : Vortr{\"a}ge der 13. ITG/GMA-Fachtagung vom 13. bis 14.3.2006 in Freiburg/Breisgau}, publisher = {VDE Verl.}, address = {Berlin}, isbn = {3-8007-2939-3}, pages = {165 -- 168}, year = {2006}, language = {de} } @article{SchoeningPoghossian2006, author = {Sch{\"o}ning, Michael Josef and Poghossian, Arshak}, title = {BioFEDs (field-effect devices) : State-of-the-art and new directions}, series = {Electroanalysis}, volume = {18}, journal = {Electroanalysis}, number = {19-20}, issn = {1521-4109}, doi = {10.1002/elan.200603609}, pages = {1893 -- 1900}, year = {2006}, language = {en} } @article{SpelthahnSchubertSchoening2012, author = {Spelthahn, Heiko and Schubert, J{\"u}rgen and Sch{\"o}ning, Michael Josef}, title = {D{\"u}nnschichtsensoren f{\"u}r die Schwermetallanalytik : Mikroelektroden auf Chalkogenidglasbasis}, series = {GIT Labor-Fachzeitschrift}, journal = {GIT Labor-Fachzeitschrift}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, pages = {285 -- 287}, year = {2012}, abstract = {Die Detektion von Schadstoffen repr{\"a}sentiert in der Umweltanalytik eine wichtige Aufgabenstellung. Gerade die Abwasser- bzw. Brauchwasseranalytik sowie die Prozesskontrolle haben einen hohen Stellenwert. Siliziumbasierte D{\"u}nnschichtsensoren bieten eine kosteng{\"u}nstige M{\"o}glichkeit, „online"-Messungen bzw. Vor-Ort-Messungen zeitnah durchzuf{\"u}hren. In dieser Arbeit wird ein potentiometrisches Sensorarray auf der Basis von Chalkogenidgl{\"a}sern zur Detektion von Schwermetallen in w{\"a}ssrigen Medien vorgestellt.}, language = {de} } @inproceedings{MorenoDosevBratovetal.2006, author = {Moreno, Lia and Dosev, D. and Bratov, A. and Dominguez, C. and Sch{\"o}ning, Michael Josef and Kloock, Joachim P.}, title = {Effect of electrical properties of the surrounding medium on the response of an interdigitated electrode array with chalcogenide glass film}, series = {XX Eurosensors : 20th anniversary ; G{\"o}teborg, Sweden, 17 - 20 September 2006 ; [proceedings]. - Vol. 1}, booktitle = {XX Eurosensors : 20th anniversary ; G{\"o}teborg, Sweden, 17 - 20 September 2006 ; [proceedings]. - Vol. 1}, address = {G{\"o}teborg}, isbn = {978-91-631-9280-7}, pages = {384 -- 385}, year = {2006}, language = {en} } @article{WuBronderPoghossianetal.2015, author = {Wu, Chunsheng and Bronder, Thomas and Poghossian, Arshak and Werner, Frederik and Sch{\"o}ning, Michael Josef}, title = {Label-free detection of DNA using light-addressable potentiometric sensor modified with a positively charged polyelectrolyte layer}, series = {Nanoscale}, volume = {14}, journal = {Nanoscale}, number = {7}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, doi = {10.1039/C4NR07225A}, pages = {6143 -- 6150}, year = {2015}, abstract = {A multi-spot (16 spots) light-addressable potentiometric sensor (MLAPS) consisting of an Al-p-Si-SiO2 structure modified with a weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was applied for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization by the intrinsic molecular charge for the first time. To achieve a preferentially flat orientation of DNA strands and thus, to reduce the distance between the DNA charge and MLAPS surface, the negatively charged probe single-stranded DNAs (ssDNA) were electrostatically adsorbed onto the positively charged PAH layer using a simple layer-by-layer (LbL) technique. In this way, more DNA charge can be positioned within the Debye length, yielding a higher sensor signal. The surface potential changes in each spot induced due to the surface modification steps (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), non-specific adsorption of mismatched ssDNA) were determined from the shifts of photocurrent-voltage curves along the voltage axis. A high sensor signal of 83 mV was registered after immobilization of probe ssDNA onto the PAH layer. The hybridization signal increases from 5 mV to 32 mV with increasing the concentration of cDNA from 0.1 nM to 5 μM. In contrast, a small signal of 5 mV was recorded in the case of non-specific adsorption of fully mismatched ssDNA (5 μM). The obtained results demonstrate the potential of the MLAPS in combination with the simple and rapid LbL immobilization technique as a promising platform for the future development of multi-spot light-addressable label-free DNA chips with direct electrical readout.}, language = {en} } @article{BegingLeinhosJablonskietal.2015, author = {Beging, Stefan and Leinhos, Marcel and Jablonski, Melanie and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Studying the spatially resolved immobilisation of enzymes on a capacitive field-effect structure by means of nano-spotting}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431891}, pages = {1353 -- 1358}, year = {2015}, language = {en} } @incollection{PoghossianSchoening2006, author = {Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Silicon-based chemical and biological field-effect sensors}, series = {Encyclopedia of Sensors. Vol. 9 S - Sk}, booktitle = {Encyclopedia of Sensors. Vol. 9 S - Sk}, publisher = {ASP, American Scientific Publ.}, address = {Stevenson Ranch, Calif.}, isbn = {1-58883-065-9}, pages = {463 -- 534}, year = {2006}, language = {en} } @article{PoghossianKatzSchoening2015, author = {Poghossian, Arshak and Katz, Evgeny and Sch{\"o}ning, Michael Josef}, title = {Enzyme logic AND-Reset and OR-Reset gates based on a field-effect electronic transducer modified with multi-enzyme membrane}, series = {Chemical Communications}, volume = {51}, journal = {Chemical Communications}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, doi = {10.1039/C5CC01362C}, pages = {6564 -- 6567}, year = {2015}, abstract = {Capacitive field-effect sensors modified with a multi-enzyme membrane have been applied for an electronic transduction of biochemical signals processed by enzyme-based AND-Reset and OR-Reset logic gates. The local pH change at the sensor surface induced by the enzymatic reaction was used for the activation of the Reset function for the first time.}, language = {en} } @inproceedings{KirchnerHenkelNaetheretal.2008, author = {Kirchner, Patrick and Henkel, H. and N{\"a}ther, Niko and Spelthahn, H. and Schneider, A. and Berger, J. and Kolstad, J. and Friedrich, P. and Sch{\"o}ning, Michael Josef}, title = {RFID-basiertes Sensorsystem zur Realisierung intelligenter Verpackungen f{\"u}r die Nahrungsmittelindustrie}, series = {KMU - innovativ: IKT 2008. CD-ROM : BMBF-Statustagung KMU - innovativ: IKT, Darmstadt, 17. - 18. Nov. 2008}, booktitle = {KMU - innovativ: IKT 2008. CD-ROM : BMBF-Statustagung KMU - innovativ: IKT, Darmstadt, 17. - 18. Nov. 2008}, number = {CD-ROM-Ausg.}, publisher = {BMBF}, address = {Berlin}, pages = {9 S.}, year = {2008}, language = {de} } @article{OberlaenderBrommWendeleretal.2015, author = {Oberl{\"a}nder, Jan and Bromm, Alexander and Wendeler, Luisa and Iken, Heiko and Palomar Duran, Marlena and Greeff, Anton and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Towards a biosensor to monitor the sterilisation efficiency of aseptic filling machines}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431900}, pages = {1299 -- 1305}, year = {2015}, abstract = {Sterilisation processes are compulsory in medicine, pharmacy, and food industries to prevent infections of consumers and microbiological contaminations of products. Monitoring the sterilisation by conventional microbiological methods is time- and lab-consuming. To overcome this problem, in this work a novel biosensor has been proposed. The sensor enables a fast method to evaluate sterilisation processes. By means of thin-film technology the sensor's transducer structures in form of IDEs (interdigitated electrodes) have been fabricated on a silicon substrate. Physical characterisation of the developed sensor was done by AFM, SEM, and profilometry. Impedance analyses were conducted for the electrical characterisation. As microbiological layer spores of B. atrophaeus have been immobilised on the sensing structure; spores of this type are a well-known sterilisation test organism. Impedance measurements at a fixed frequency over time were performed to monitor the immobilisation process. A sterilisation process according to aseptic filling machines was applied to demonstrate the sensor functionality. After both, immobilisation and sterilisation, a change in impedance could successfully be detected.}, language = {en} } @article{HuckPoghossianBaeckeretal.2015, author = {Huck, Christina and Poghossian, Arshak and B{\"a}cker, Matthias and Reisert, Steffen and Kramer, Friederike and Begoyan, Vardges K. and Buniatyan, Vahe V. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter sensing using high-k oxide of barium strontium titanate}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431911}, pages = {1259}, year = {2015}, abstract = {High-k perovskite oxide of barium strontium titanate (BST) represents a very attractive multi-functional transducer material for the development of (bio-)chemical sensors. In this work, a Si-based sensor chip containing Pt interdigitated electrodes covered with a thin BST layer (485 nm) has been developed for multi-parameter chemical sensing. The chip has been applied for the contactless measurement of the electrolyte conductivity, the detection of adsorbed charged macromolecules (positively charged polyelectrolytes of polyethylenimine) and the concentration of hydrogen peroxide (H2O2) vapor. The experimental results of functional testing of individual sensors are presented. The mechanism of the BST sensitivity to charged polyelectrolytes and H2O2 vapor has been proposed and discussed.}, language = {en} } @article{JildehWagnerSchoeningetal.2015, author = {Jildeh, Zaid B. and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Pieper, Martin}, title = {Simulating the electromagnetic-thermal treatment of thin aluminium layers for adhesion improvement}, series = {Physica status solidi (a)}, volume = {Vol. 212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431893}, pages = {1234 -- 1241}, year = {2015}, abstract = {A composite layer material used in packaging industry is made from joining layers of different materials using an adhesive. An important processing step in the production of aluminium-containing composites is the surface treatment and consequent coating of adhesive material on the aluminium surface. To increase adhesion strength between aluminium layer and the adhesive material, the foil is heat treated. For efficient heating, induction heating was considered as state-of-the-art treatment process. Due to the complexity of the heating process and the unpredictable nature of the heating source, the control of the process is not yet optimised. In this work, a finite element analysis of the process was established and various process parameters were studied. The process was simplified and modelled in 3D. The numerical model contains an air domain, an aluminium layer and a copper coil fitted with a magnetic field concentrating material. The effect of changing the speed of the aluminium foil (or rolling speed) was studied with the change of the coil current. Statistical analysis was used for generating a general control equation of coil current with changing rolling speed.}, language = {en} } @article{PilasIkenSelmeretal.2015, author = {Pilas, Johanna and Iken, Heiko and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development of a multi-parameter sensor chip for the simultaneous detection of organic compounds in biogas processes}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431894}, pages = {1306 -- 1312}, year = {2015}, abstract = {An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage.}, language = {en} } @article{BreuerRaueKirschbaumetal.2015, author = {Breuer, Lars and Raue, Markus and Kirschbaum, M. and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, R. and Wagner, Torsten}, title = {Light-controllable polymeric material based on temperature-sensitive hydrogels with incorporated graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431944}, pages = {1368 -- 1374}, year = {2015}, abstract = {Poly(N-isopropylacrylamide) (PNIPAAm) hydrogel films with incorporated graphene oxide (GO) were developed and tested as light-stimulated actuators. GO dispersions were synthesized via Hummers method and characterized toward their optical properties and photothermal energy conversion. The hydrogels were prepared by means of photopolymerization. In addition, the influence of GO within the hydrogel network on the lower critical solution temperature (LCST) was investigated by differential scanning calorimetry (DSC). The optical absorbance and the response to illumination were determined as a function of GO concentration for thin hydrogel films. A proof of principle for the stimulation with light was performed.}, language = {en} } @article{SchiffelsSelmer2015, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {A flexible toolbox to study protein-assisted metalloenzyme assembly in vitro}, series = {Biotechnology and Bioengineering}, volume = {112}, journal = {Biotechnology and Bioengineering}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0290}, doi = {10.1002/bit.25658}, pages = {2360 -- 2372}, year = {2015}, language = {en} } @article{VoigtAlbrechtSieversetal.2015, author = {Voigt, Birgit and Albrecht, Dirk and Sievers, Susanne and Becher, D{\"o}rte and Bongaerts, Johannes and Evers, Stefan and Schweder, Thomas and Maurer, Karl-Heinz and Hecker, Michael}, title = {High-resolution proteome maps of Bacillus licheniformis cells growing in minimal medium}, series = {Proteomics}, volume = {15}, journal = {Proteomics}, number = {15}, publisher = {Wiley}, address = {Weinheim}, issn = {1615-9861}, doi = {10.1002/pmic.201400504}, pages = {2629 -- 2633}, year = {2015}, language = {en} } @article{DantismTakenagaWagneretal.2015, author = {Dantism, S. and Takenaga, S. and Wagner, P. and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Light-addressable Potentiometric Sensor (LAPS) Combined with Multi-chamber Structures to Investigate the Metabolic Activity of Cells}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.647}, pages = {384 -- 387}, year = {2015}, abstract = {LAPS are field-effect-based potentiometric sensors which are able to monitor analyte concentrations in a spatially resolved manner. Hence, a LAPS sensor system is a powerful device to record chemical imaging of the concentration of chemical species in an aqueous solution, chemical reactions, or the growth of cell colonies on the sensor surface, to record chemical images. In this work, multi-chamber 3D-printed structures made out of polymer (PP-ABS) were combined with LAPS chips to analyse differentially and simultaneously the metabolic activity of Escherichia coli K12 and Chinese hamster ovary (CHO) cells, and the responds of those cells to the addition of glucose solution.}, language = {en} } @article{MolinnusBaeckerSiegertetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Siegert, Petra and Willenberg, H. and Poghossian, Arshak and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Detection of Adrenaline Based on Substrate Recycling Amplification}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.708}, pages = {540 -- 543}, year = {2015}, abstract = {An amperometric enzyme biosensor has been applied for the detection of adrenaline. The adrenaline biosensor has been prepared by modification of an oxygen electrode with the enzyme laccase that operates at a broad pH range between pH 3.5 to pH 8. The enzyme molecules were immobilized via cross-linking with glutaraldehyde. The sensitivity of the developed adrenaline biosensor in different pH buffer solutions has been studied.}, language = {en} } @article{SchusserKrischerMolinetal.2015, author = {Schusser, Sebastian and Krischer, M. and Molin, D. G. M. and Akker, N. M. S. van den and B{\"a}cker, Matthias and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Sensor System for in-situ and Real-time Monitoring of Polymer (bio) degradation}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.815}, pages = {948 -- 951}, year = {2015}, abstract = {A sensor system for investigating (bio)degradationprocesses of polymers is presented. The system utilizes semiconductor field-effect sensors and is capable of monitoring the degradation process in-situ and in real-time. The degradation of the polymer poly(d,l-lactic acid) is exemplarily monitored in solutions with different pH value, pH-buffer solution containing the model enzyme lipase from Rhizomucormiehei and cell-culture medium containing supernatants from stimulated and non-stimulated THP-1-derived macrophages mimicking activation of the immune system.}, language = {en} } @article{PilasMarianoKeusgenetal.2015, author = {Pilas, Johanna and Mariano, K. and Keusgen, M. and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Optimization of an Enzyme-based Multi-parameter Biosensor for Monitoring Biogas Processes}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.702}, pages = {532 -- 535}, year = {2015}, language = {en} } @article{MiyamotoBingWagneretal.2015, author = {Miyamoto, Ko-ichiro and Bing, Yu and Wagner, Torsten and Yoshinobu, Tatsuo and Sch{\"o}ning, Michael Josef}, title = {Visualization of Defects on a Cultured Cell Layer by Utilizing Chemical Imaging Sensor}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.806}, pages = {936 -- 939}, year = {2015}, abstract = {The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) inthe sample. In this study, a novel wound-healing assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the defect of a cell layer brought into proximity of the sensing surface.A reduced impedance inside the defect, which was artificially formed ina cell layer, was successfully visualized in a photocurrent image.}, language = {en} } @article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, S. and Wu, Chunsheng and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Electrostatic Detection of Unlabelled Single- and Double-stranded DNA Using Capacitive Field-effect Devices Functionalized with a Positively Charged Polyelectrolyte Layer}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.710}, pages = {544 -- 547}, year = {2015}, abstract = {Capacitive field-effect electrolyte-insulator-semiconductor sensors consisting of an Al-p-Si-SiO2 structure have been used for the electrical detection of unlabelled single- and double-stranded DNA (dsDNA) molecules by their intrinsic charge. A simple functionalization protocol based on the layer-by-layer (LbL) technique was used to prepare a weak polyelectrolyte/probe-DNA bilayer, followed by the hybridization with complementary target DNA molecules. Due to the flat orientation of the LbL-adsorbed DNA molecules, a high sensor signal has been achieved. In addition, direct label-free detection of in-solution hybridized dsDNA molecules has been studied.}, language = {en} } @inproceedings{PoghossianIngebrandtPlatenetal.2006, author = {Poghossian, Arshak and Ingebrandt, S. and Platen, J. and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors with charged macromolecules - from micro towards nano aspects}, series = {Biochemical Sensing Utilisation of Micro-and Nanotechnologies, Warschau, Nov. 2005 : Lecture Notes of the ICB Seminar / ed.: M. Mascini, W. Torbicz}, booktitle = {Biochemical Sensing Utilisation of Micro-and Nanotechnologies, Warschau, Nov. 2005 : Lecture Notes of the ICB Seminar / ed.: M. Mascini, W. Torbicz}, publisher = {Polish Academy Sciences Press}, address = {Warsaw}, pages = {74 -- 81}, year = {2006}, language = {en} } @article{YoshinobuMoritzFingeretal.2006, author = {Yoshinobu, Tatsuo and Moritz, Werner and Finger, Friedhelm and Sch{\"o}ning, Michael Josef}, title = {Application of thin-film amorphous silicon to chemical imaging}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {Paper 0910-A-20-01}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {1 -- 10}, year = {2006}, language = {en} } @article{SchoeningAbouzarIngebrandtetal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Ingebrandt, Sven and Platen, Johannes and Offenh{\"a}usser, Andreas and Poghossian, Arshak}, title = {Towards label-free detection of charged macromolecules using field-effect-based structures : Scaling down from capacitive EIS sensor over ISFET to nano-scale devices}, series = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, journal = {Nanostructured materials and hybrid composites for gas sensors and biomedical applications : symposium held April 18-20, 2006, San Francisco , California, U.S.A.}, number = {paper 0915-R05-04}, editor = {Comini, Elisabetta}, isbn = {9781558998711}, pages = {89 -- 94}, year = {2006}, language = {en} } @article{TakenagaSchneiderErbayetal.2015, author = {Takenaga, Shoko and Schneider, Benno and Erbay, E. and Biselli, Manfred and Schnitzler, Thomas and Sch{\"o}ning, Michael Josef and Wagner, Torsten}, title = {Fabrication of biocompatible lab-on-chip devices for biomedical applications by means of a 3D-printing process}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201532053}, pages = {1347 -- 1352}, year = {2015}, abstract = {A new microfluidic assembly method for semiconductor-based biosensors using 3D-printing technologies was proposed for a rapid and cost-efficient design of new sensor systems. The microfluidic unit is designed and printed by a 3D-printer in just a few hours and assembled on a light-addressable potentiometric sensor (LAPS) chip using a photo resin. The cell growth curves obtained from culturing cells within microfluidics-based LAPS systems were compared with cell growth curves in cell culture flasks to examine biocompatibility of the 3D-printed chips. Furthermore, an optimal cell culturing within microfluidics-based LAPS chips was achieved by adjusting the fetal calf serum concentrations of the cell culture medium, an important factor for the cell proliferation.}, language = {en} } @article{MolinnusBaeckerIkenetal.2015, author = {Molinnus, Denise and B{\"a}cker, Matthias and Iken, Heiko and Poghossian, Arshak and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Concept for a biomolecular logic chip with an integrated sensor and actuator function}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431913}, pages = {1382 -- 1388}, year = {2015}, abstract = {A concept for a new generation of an integrated multi-functional biosensor/actuator system is developed, which is based on biomolecular logic principles. Such a system is expected to be able to detect multiple biochemical input signals simultaneously and in real-time and convert them into electrical output signals with logical operations such as OR, AND, etc. The system can be designed as a closed-loop drug release device triggered by an enzyme logic gate, while the release of the drug induced by the actuator at the required dosage and timing will be controlled by an additional drug sensor. Thus, the system could help to make an accurate and specific diagnosis. The presented concept is exemplarily demonstrated by using an enzyme logic gate based on a glucose/glucose oxidase system, a temperature-responsive hydrogel mimicking the actuator function and an insulin (drug) sensor. In this work, the results of functional testing of individual amperometric glucose and insulin sensors as well as an impedimetric sensor for the detection of the hydrogel swelling/shrinking are presented.}, language = {en} } @article{WarmerWagnerSchoeningetal.2015, author = {Warmer, Johannes and Wagner, Patrick and Sch{\"o}ning, Michael Josef and Kaul, Peter}, title = {Detection of triacetone triperoxide using temperature cycled metal-oxide semiconductor gas sensors}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431882}, pages = {1289 -- 1298}, year = {2015}, language = {en} } @article{DelleHuckBaeckeretal.2015, author = {Delle, Lotta E. and Huck, Christina and B{\"a}cker, Matthias and M{\"u}ller, Frank and Grandthyll, Samuel and Jacobs, Karin and Lilischkis, Rainer and Vu, Xuan T. and Sch{\"o}ning, Michael Josef and Wagner, Patrick and Thoelen, Roland and Weil, Maryam and Ingebrandt, Sven}, title = {Impedimetric immunosensor for the detection of histamine based on reduced graphene oxide}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431863}, pages = {1327 -- 1334}, year = {2015}, language = {en} } @article{HenkenOosterhuisOehlschlaegeretal.2012, author = {Henken, F. E. and Oosterhuis, K. and {\"O}hlschl{\"a}ger, Peter and Bosch, L. and Hooijberg, E. and Haanen, J. B. A. G. and Steenbergen, R. D. M.}, title = {Preclinical safety evaluation of DNA vaccines encoding modified HPV16 E6 and E7}, series = {Vaccine}, volume = {30}, journal = {Vaccine}, number = {28}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0264-410X}, doi = {10.1016/j.vaccine.2012.04.013}, pages = {4259 -- 4266}, year = {2012}, abstract = {Persistent infection with high-risk human papillomaviruses (hrHPV) can result in the formation of anogenital cancers. As hrHPV proteins E6 and E7 are required for cancer initiation and maintenance, they are ideal targets for immunotherapeutic interventions. Previously, we have described the development of DNA vaccines for the induction of HPV16 E6 and E7 specific T cell immunity. These vaccines consist of 'gene-shuffled' (SH) versions of HPV16 E6 and E7 that were fused to Tetanus Toxin Fragment C domain 1 (TTFC) and were named TTFC-E6SH and TTFC-E7SH. Gene-shuffling was performed to avoid the risk of inducing malignant transformation at the vaccination site. Here, we describe the preclinical safety evaluation of these candidate vaccines by analysis of their transforming capacity in vitro using established murine fibroblasts (NIH 3T3 cells) and primary human foreskin keratinocytes (HFKs). We demonstrate that neither ectopic expression of TTFC-E6SH and TTFC-E7SH alone or in combination enabled NIH 3T3 cells to form colonies in soft agar. In contrast, expression of HPV16 E6WT and E7WT alone or in combination resulted in effective transformation. Similarly, retroviral transduction of HFKs from three independent donors with both TTFC-E6SH and TTFC-E7SH alone or in combination did not show any signs of immortalization. In contrast, the combined expression of E6WT and E7WT induced immortalization in HFKs from all donors. Based on these results we consider it justified to proceed to clinical evaluation of DNA vaccines encoding TTFC-E6SH and TTFC-E7SH in patients with HPV16 associated (pre)malignancies.}, language = {en} } @article{ImmelGruetzkeSpaeteetal.2012, author = {Immel, Timo and Gr{\"u}tzke, Martin and Sp{\"a}te, Anne-Katrin and Groth, Ulrich and {\"O}hlschl{\"a}ger, Peter and Huhn, Thomas}, title = {Synthesis and X-ray structure analysis of a heptacoordinate titanium(IV)-bis-chelate with enhanced in vivo antitumor efficacy}, series = {Chemical Communications}, volume = {48}, journal = {Chemical Communications}, number = {46}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1364-548X}, doi = {10.1039/C2CC31624B}, pages = {5790 -- 5792}, year = {2012}, abstract = {Chelate stabilization of a titanium(IV)-salan alkoxide by ligand exchange with 2,6-pyridinedicarboxylic acid (dipic) resulted in heptacoordinate complex 3 which is not redox-active, stable on silica gel and has increased aqueous stability. 3 is highly toxic in HeLa S3 and Hep G2 and has enhanced antitumor efficacy in a mouse cervical-cancer model.}, language = {en} } @article{BronderPoghossianSchejaetal.2015, author = {Bronder, Thomas and Poghossian, Arshak and Scheja, Sabrina and Wu, Chunsheng and Keusgen, Michael and Mewes, Dieter and Sch{\"o}ning, Michael Josef}, title = {DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer}, series = {Applied Materials \& Interfaces}, volume = {36}, journal = {Applied Materials \& Interfaces}, number = {7}, publisher = {American Chemical Society}, address = {Washington, DC}, doi = {10.1021/acsami.5b05146}, pages = {20068 -- 20075}, year = {2015}, abstract = {Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.}, language = {en} } @article{OberlaenderJildehKirchneretal.2015, author = {Oberl{\"a}nder, Jan and Jildeh, Zaid B. and Kirchner, Patrick and Wendeler, Luisa and Bromm, Alexander and Iken, Heiko and Wagner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Study of Interdigitated Electrode Arrays Using Experiments and Finite Element Models for the Evaluation of Sterilization Processes}, series = {Sensors}, volume = {15}, journal = {Sensors}, number = {10}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s151026115}, pages = {26115 -- 26127}, year = {2015}, abstract = {In this work, a sensor to evaluate sterilization processes with hydrogen peroxide vapor has been characterized. Experimental, analytical and numerical methods were applied to evaluate and study the sensor behavior. The sensor set-up is based on planar interdigitated electrodes. The interdigitated electrode structure consists of 614 electrode fingers spanning over a total sensing area of 20 mm2. Sensor measurements were conducted with and without microbiological spores as well as after an industrial sterilization protocol. The measurements were verified using an analytical expression based on a first-order elliptical integral. A model based on the finite element method with periodic boundary conditions in two dimensions was developed and utilized to validate the experimental findings.}, language = {en} } @article{BrahmaMusioIsmayilovaetal.2015, author = {Brahma, Aischarya and Musio, Biagia and Ismayilova, Uliviya and Nikbin, Nikzad and Kamptmann, Sonja B. and Siegert, Petra and Jeromin, G{\"u}nter Erich and Ley, Steven and Pohl, Martina}, title = {An orthogonal biocatalytic approach for the safe generation and use of HCN in a multi-step continuous preparation of chiral O-acetylcyanohydrins}, series = {Synlett}, journal = {Synlett}, number = {Publ. online 29.09.2015}, publisher = {Thieme}, address = {Stuttgart}, issn = {0936-5214 (Print) ; 1437-2096 (e-Journal)}, doi = {10.1055/s-0035-1560644}, year = {2015}, language = {de} } @inproceedings{OberlaenderJildehKirchneretal.2015, author = {Oberl{\"a}nder, Jan and Jildeh, Zaid B. and Kirchner, Patrick and Wendeler, Luisa and Bromm, Alexander and Iken, Heiko and Wagner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Experimental and numerical evaluation of interdigitated electrode array for monitoring gaseous sterilization processes}, series = {12. Dresdner Sensor-Symposium 2015}, booktitle = {12. Dresdner Sensor-Symposium 2015}, doi = {10.5162/12dss2015/P3.11}, pages = {163 -- 168}, year = {2015}, language = {en} } @article{SchusserKrischerBaeckeretal.2015, author = {Schusser, Sebastian and Krischer, Maximillian and B{\"a}cker, Matthias and Poghossian, Arshak and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Monitoring of the Enzymatically Catalyzed Degradation of Biodegradable Polymers by Means of Capacitive Field-Effect Sensors}, series = {Analytical Chemistry}, volume = {87}, journal = {Analytical Chemistry}, number = {13}, publisher = {ACS Publications}, address = {Washington, DC}, issn = {1520-6882}, doi = {10.1021/acs.analchem.5b00617}, pages = {6607 -- 6613}, year = {2015}, abstract = {Designing novel or optimizing existing biodegradable polymers for biomedical applications requires numerous tests on the effect of substances on the degradation process. In the present work, polymer-modified electrolyte-insulator-semiconductor (PMEIS) sensors have been applied for monitoring an enzymatically catalyzed degradation of polymers for the first time. The thin films of biodegradable polymer poly(d,l-lactic acid) and enzyme lipase were used as a model system. During degradation, the sensors were read-out by means of impedance spectroscopy. In order to interpret the data obtained from impedance measurements, an electrical equivalent circuit model was developed. In addition, morphological investigations of the polymer surface have been performed by means of in situ atomic force microscopy. The sensor signal change, which reflects the progress of degradation, indicates an accelerated degradation in the presence of the enzyme compared to hydrolysis in neutral pH buffer media. The degradation rate increases with increasing enzyme concentration. The obtained results demonstrate the potential of PMEIS sensors as a very promising tool for in situ and real-time monitoring of degradation of polymers.}, language = {en} } @article{MiyamatoSakakitaWagneretal.2015, author = {Miyamato, Ko-ichiro and Sakakita, Sakura and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Application of chemical imaging sensor to in-situ pH imaging in the vicinity of a corroding metal surface}, series = {Electrochimica Acta}, volume = {183}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2015.07.184}, pages = {137 -- 142}, year = {2015}, abstract = {The chemical imaging sensor was applied to in-situ pH imaging of the solution in the vicinity of a corroding surface of stainless steel under potentiostatic polarization. A test piece of polished stainless steel was placed on the sensing surface leaving a narrow gap filled with artificial seawater and the stainless steel was corroded under polarization. The pH images obtained during polarization showed correspondence between the region of lower pH and the site of corrosion. It was also found that the pH value in the gap became as low as 2 by polarization, which triggered corrosion.}, language = {en} } @article{OberlaenderKirchnerKeusgenetal.2015, author = {Oberl{\"a}nder, Jan and Kirchner, Patrick and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Strategies in developing thin-film sensors for monitoring aseptic food processes : Theoretical considerations and investigations of passivation materials}, series = {Electrochimica Acta}, volume = {183}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2015.06.126}, pages = {130 -- 136}, year = {2015}, abstract = {The sterilization of packages in aseptic food processes is highly significant to maintain a consumer-safe product with extended shelf-life. Today, the sterilization of food packages is predominantly accomplished by gaseous hydrogen peroxide (H2O2) in combination with heat. In order to monitor this sterilization process, calorimetric gas sensors as differential set-up of two platinum temperature sensors representing a catalytically active (additionally deposition of MnO2) and a passive segment have been recently developed. The temperature rise of the exothermic decomposition serves as an indicator of the present H2O2 concentration. In the present work, a theoretical approach considering the sensor's thermochemistry and physical transport phenomena was formulated to evaluate the temperature rise based on the energy content of gaseous H2O2. In a further part of this work, three polymers have been analyzed with respect to their application as passivation materials. The examined polymers are photoresist SU-8, perfluoroalkoxy (PFA) and fluorinated ethylene propylene (FEP). Thermal analyses by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) have been conducted to determine the operation limits of the polymers. The overall chemical resistance and stability of the polymers against the harsh environmental conditions during the sterilization process have been examined by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR).}, language = {en} } @incollection{PoghossianSchusserBaeckeretal.2015, author = {Poghossian, Arshak and Schusser, Sebastian and B{\"a}cker, M. and Leinhos, Marcel and Sch{\"o}ning, Michael Josef}, title = {Real-time in-situ electrical monitoring of the degradation of biopolymers using semiconductor field-effect devices}, series = {Biodegradable biopolymers. Vol. 1}, booktitle = {Biodegradable biopolymers. Vol. 1}, publisher = {Nova Science Publ.}, address = {Hauppauge}, isbn = {978-1-63483-632-6}, pages = {135 -- 153}, year = {2015}, language = {en} } @article{MuribYeapEurlingsetal.2016, author = {Murib, M. S. and Yeap, W. S. and Eurlings, Y. and Grinsven, B. van and Boyen, H.-G. and Conings, B. and Michiels, L. and Ameloot, M. and Carleer, R. and Warmer, J. and Kaul, P. and Haenen, K. and Sch{\"o}ning, Michael Josef and Ceuninck, W. de and Wagner, P.}, title = {Heat-transfer based characterization of DNA on synthetic sapphire chips}, series = {Sensors and Actuators B: Chemical}, volume = {230}, journal = {Sensors and Actuators B: Chemical}, number = {230}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.02.027}, pages = {260 -- 271}, year = {2016}, abstract = {In this study, we show that synthetic sapphire (Al₂O₃), an established implant material, can also serve as a platform material for biosensors comparable to nanocrystalline diamond. Sapphire chips, beads, and powder were first modified with (3-aminopropyl) triethoxysilane (APTES), followed by succinic anhydride (SA), and finally single-stranded probe DNA was EDC coupled to the functionalized layer. The presence of the APTES-SA layer on sapphire powders was confirmed by thermogravimetric analyis and Fourier-transform infrared spectroscopy. Using planar sapphire chips as substrates and X-ray photoelectron spectroscopy (XPS) as surface-sensitive tool, the sequence of individual layers was analyzed with respect to their chemical state, enabling the quantification of areal densities of the involved molecular units. Fluorescence microscopy was used to demonstrate the hybridization of fluorescently tagged target DNA to the probe DNA, including denaturation- and re-hybridization experiments. Due to its high thermal conductivity, synthetic sapphire is especially suitable as a chip material for the heat-transfer method, which was employed to distinguish complementary- and non-complementary DNA duplexes containing single-nucleotide polymorphisms. These results indicate that it is possible to detect mutations electronically with a chemically resilient and electrically insulating chip material.}, language = {en} } @inproceedings{BreuerRaueMangetal.2015, author = {Breuer, Lars and Raue, Markus and Mang, Thomas and Sch{\"o}ning, Michael Josef and Thoelen, Ronald and Wagner, Torsten}, title = {Light-stimulated hydrogel actuators with incorporated graphene oxide for microfluidic applications}, series = {12. Dresdner Sensor-Symposium 2015}, booktitle = {12. Dresdner Sensor-Symposium 2015}, doi = {10.5162/12dss2015/P5.8}, pages = {206 -- 209}, year = {2015}, language = {en} } @article{HamadBilattoAdlyetal.2016, author = {Hamad, E. M. and Bilatto, S. E. R. and Adly, N. Y. and Correa, D. S. and Wolfrum, B. and Sch{\"o}ning, Michael Josef and Offenh{\"a}usser, A. and Yakushenko, A.}, title = {Inkjet printing of UV-curable adhesive and dielectric inks for microfluidic devices}, series = {Lab on a Chip}, volume = {16}, journal = {Lab on a Chip}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1473-0189}, doi = {10.1039/C5LC01195G}, pages = {70 -- 74}, year = {2016}, abstract = {Bonding of polymer-based microfluidics to polymer substrates still poses a challenge for Lab-On-a-Chip applications. Especially, when sensing elements are incorporated, patterned deposition of adhesives with curing at ambient conditions is required. Here, we demonstrate a fabrication method for fully printed microfluidic systems with sensing elements using inkjet and stereolithographic 3D-printing.}, language = {en} } @inproceedings{PoghossianBronderWuetal.2015, author = {Poghossian, Arshak and Bronder, Thomas and Wu, Chunsheng and Sch{\"o}ning, Michael Josef}, title = {Label-free sensing of biomolecules by their intrinsic molecular charge using field-effect devices}, series = {Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13}, booktitle = {Semiconductor Micro- and Nanoelectonics : Proceedings of the tenth international conference, Yerevan, Armenia, September 11-13}, isbn = {978-5-8084-1991-9}, pages = {61 -- 63}, year = {2015}, language = {en} } @article{MiyamotoYuIsodaetal.2016, author = {Miyamoto, Ko-ichiro and Yu, Bing and Isoda, Hiroko and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Yoshinobu, Tatsuo}, title = {Visualization of the recovery process of defects in a cultured cell layer by chemical imaging sensor}, series = {Sensors and Actuators B: Chemical}, volume = {236}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005}, doi = {10.1016/j.snb.2016.04.018}, pages = {965 -- 969}, year = {2016}, abstract = {The chemical imaging sensor is a field-effect sensor which is able to visualize both the distribution of ions (in LAPS mode) and the distribution of impedance (in SPIM mode) in the sample. In this study, a novel cell assay is proposed, in which the chemical imaging sensor operated in SPIM mode is applied to monitor the recovery of defects in a cell layer brought into proximity of the sensing surface. A reduced impedance at a defect formed artificially in a cell layer was successfully visualized in a photocurrent image. The cell layer was cultured over two weeks, during which the temporal change of the photocurrent distribution corresponding to the recovery of the defect was observed.}, language = {de} } @article{DantismTakenagaWagneretal.2016, author = {Dantism, Shahriar and Takenaga, Shoko and Wagner, Patrick and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli K12 with a multi-​chamber-​based LAPS system}, series = {Physica status solidi (a)}, volume = {213}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6300}, doi = {10.1002/pssa.201533043}, pages = {1479 -- 1485}, year = {2016}, abstract = {On-line monitoring of the metabolic activity of microorganisms involved in intermediate stages of biogas production plays an important role to avoid undesirable "down times" during the biogas production. In order to control this process, an on-chip differential measuring system based on the light-addressable potentiometric sensor (LAPS) principle combined with a 3D-printed multi-chamber structure has been realized. As a test microorganism, Escherichia coli K12 (E. coli K12) were used for cell-based measurements. Multi-chamber structures were developed to determine the metabolic activity of E. coli K12 in suspension for a different number of cells, responding to the addition of a constant or variable amount of glucose concentrations, enabling differential and simultaneous measurements.}, language = {en} }