@inproceedings{TymeckiGlabKoncki2006, author = {Tymecki, Lukasz and Glab, Stanislaw and Koncki, Robert}, title = {Miniaturized, planar ion-selective electrodes fabricated by means of thick-film technology}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1506}, year = {2006}, abstract = {Various planar technologies are employed for developing solid-state sensors having low cost, small size and high reproducibility; thin- and thick-film technologies are most suitable for such productions. Screen-printing is especially suitable due to its simplicity, low-cost, high reproducibility and efficiency in large-scale production. This technology enables the deposition of a thick layer and allows precise pattern control. Moreover, this is a highly economic technology, saving large amounts of the used inks. In the course of repetitions of the film-deposition procedure there is no waste of material due to additivity of this thick-film technology. Finally, the thick films can be easily and quickly deposited on inexpensive substrates. In this contribution, thick-film ion-selective electrodes based on ionophores as well as crystalline ion-selective materials dedicated for potentiometric measurements are demonstrated. Analytical parameters of these sensors are comparable with those reported for conventional potentiometric electrodes. All mentioned thick-film strip electrodes have been totally fabricated in only one, fully automated thickfilm technology, without any additional manual, chemical or electrochemical steps. In all cases simple, inexpensive, commercially available materials, i.e. flexible, plastic substrates and easily cured polymer-based pastes were used.}, subject = {Biosensor}, language = {en} } @inproceedings{KraftRetkowitz2006, author = {Kraft, Bodo and Retkowitz, Daniel}, title = {Rule-Dependencies for Visual Knowledge Specification in Conceptual Design}, year = {2006}, abstract = {In: Proc. of the 11th Intl. Conf. on Computing in Civil and Building Engineering (ICCCBE-XI) ed. Hugues Rivard, Montreal, Canada, Seite 1-12, ACSE (CD-ROM), 2006 Currently, the conceptual design phase is not adequately supported by any CAD tool. Neither the support while elaborating conceptual sketches, nor the automatic proof of correctness with respect to effective restrictions is currently provided by any commercial tool. To enable domain experts to store the common as well as their personal domain knowledge, we develop a visual language for knowledge formalization. In this paper, a major extension to the already existing concepts is introduced. The possibility to define rule dependencies extends the expressiveness of the knowledge definition language and contributes to the usability of our approach.}, subject = {CAD}, language = {en} } @inproceedings{KloockSchubertErmelenkoetal.2006, author = {Kloock, Joachim P. and Schubert, J. and Ermelenko, Y. and Vlasov, Y. G. and Bratov, A. and Sch{\"o}ning, Michael Josef}, title = {Thin-film sensors with chalcogenide glass materials - a general survey}, series = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, booktitle = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, address = {Warsaw}, pages = {92 -- 97}, year = {2006}, language = {en} } @inproceedings{Staat2006, author = {Staat, Manfred}, title = {Problems and chances for probabilistic fracture mechanics in the analysis of steel pressure boundary reliability. - {\"U}berarb. Ausg.}, year = {2006}, abstract = {In: Technical feasibility and reliability of passive safety systems for nuclear power plants. Proceedings of an Advisory Group Meeting held in J{\"u}lich, 21-24 November 1994. - Vienna , 1996. - Seite: 43 - 55 IAEA-TECDOC-920 Abstract: It is shown that the difficulty for probabilistic fracture mechanics (PFM) is the general problem of the high reliability of a small population. There is no way around the problem as yet. Therefore what PFM can contribute to the reliability of steel pressure boundaries is demon­strated with the example of a typical reactor pressure vessel and critically discussed. Although no method is distinguishable that could give exact failure probabilities, PFM has several addi­tional chances. Upper limits for failure probability may be obtained together with trends for design and operating conditions. Further, PFM can identify the most sensitive parameters, improved control of which would increase reliability. Thus PFM should play a vital role in the analysis of steel pressure boundaries despite all shortcomings.}, subject = {Bruchmechanik}, language = {en} } @inproceedings{SchoeningAbouzarWagneretal.2006, author = {Sch{\"o}ning, Michael Josef and Abouzar, Maryam H. and Wagner, Torsten and N{\"a}ther, Niko and Rolka, David and Yoshinobu, Tatsuo and Kloock, Joachim P. and Turek, Monika and Ingebrandt, Sven and Poghossian, Arshak}, title = {A semiconductor-based field-effect platform for (bio-)chemical and physical sensors: From capacitive EIS sensors and LAPS over ISFETs to nano-scale devices}, series = {MRS Proceedings}, booktitle = {MRS Proceedings}, doi = {10.1557/PROC-0952-F08-02}, pages = {1 -- 9}, year = {2006}, language = {en} } @inproceedings{PlatenPoghossianSchoening2006, author = {Platen, Johannes and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Microstructured Nanostructures - nanostructuring by means of conventional photolithography and layer-expansion technique}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1477}, year = {2006}, abstract = {A new and simple method for nanostructuring using conventional photolithography and layer expansion or pattern-size reduction technique is presented, which can further be applied for the fabrication of different nanostructures and nano-devices. The method is based on the conversion of a photolithographically patterned metal layer to a metal-oxide mask with improved pattern-size resolution using thermal oxidation. With this technique, the pattern size can be scaled down to several nanometer dimensions. The proposed method is experimentally demonstrated by preparing nanostructures with different configurations and layouts, like circles, rectangles, trapezoids, "fluidic-channel"-, "cantilever"- and meander-type structures.}, subject = {Biosensor}, language = {en} } @inproceedings{PoghossianSchumacherKloocketal.2006, author = {Poghossian, Arshak and Schumacher, Kerstin and Kloock, Joachim P. and Rosenkranz, Christian and Schultze, Joachim W. and M{\"u}ller-Veggian, Mattea and Sch{\"o}ning, Michael Josef}, title = {Functional testing and characterisation of ISFETs on wafer level by means of a micro-droplet cell}, url = {http://nbn-resolving.de/urn:nbn:de:hbz:a96-opus-1259}, year = {2006}, abstract = {A wafer-level functionality testing and characterisation system for ISFETs (ionsensitive field-effect transistor) is realised by means of integration of a specifically designed capillary electrochemical micro-droplet cell into a commercial wafer prober-station. The developed system allows the identification and selection of "good" ISFETs at the earliest stage and to avoid expensive bonding, encapsulation and packaging processes for nonfunctioning ISFETs and thus, to decrease costs, which are wasted for bad dies. The developed system is also feasible for wafer-level characterisation of ISFETs in terms of sensitivity, hysteresis and response time. Additionally, the system might be also utilised for wafer-level testing of further electrochemical sensors.}, subject = {Biosensor}, language = {en} } @inproceedings{PoghossianIngebrandtPlatenetal.2006, author = {Poghossian, Arshak and Ingebrandt, S. and Platen, J. and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors with charged macromolecules - from micro towards nano aspects}, series = {Biochemical Sensing Utilisation of Micro-and Nanotechnologies, Warschau, Nov. 2005 : Lecture Notes of the ICB Seminar / ed.: M. Mascini, W. Torbicz}, booktitle = {Biochemical Sensing Utilisation of Micro-and Nanotechnologies, Warschau, Nov. 2005 : Lecture Notes of the ICB Seminar / ed.: M. Mascini, W. Torbicz}, publisher = {Polish Academy Sciences Press}, address = {Warsaw}, pages = {74 -- 81}, year = {2006}, language = {en} } @inproceedings{NaetherPoghossianPlatenetal.2006, author = {N{\"a}ther, Niko and Poghossian, Arshak and Platen, J. and Yoshinobu, T. and Koudelka-Hep, M. and Sch{\"o}ning, Michael Josef}, title = {Multi-parameter sensing of both physical and (bio-)chemical quantities using the same transducer principle}, series = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, booktitle = {Biochemical sensing utilisation of micro- and nanotechnologies : Warsaw, [23rd - 26th] November 2005 / ed. by M. Mascini ...}, address = {Warsaw}, pages = {172 -- 181}, year = {2006}, language = {en} } @inproceedings{MorenoDosevBratovetal.2006, author = {Moreno, Lia and Dosev, D. and Bratov, A. and Dominguez, C. and Sch{\"o}ning, Michael Josef and Kloock, Joachim P.}, title = {Effect of electrical properties of the surrounding medium on the response of an interdigitated electrode array with chalcogenide glass film}, series = {XX Eurosensors : 20th anniversary ; G{\"o}teborg, Sweden, 17 - 20 September 2006 ; [proceedings]. - Vol. 1}, booktitle = {XX Eurosensors : 20th anniversary ; G{\"o}teborg, Sweden, 17 - 20 September 2006 ; [proceedings]. - Vol. 1}, address = {G{\"o}teborg}, isbn = {978-91-631-9280-7}, pages = {384 -- 385}, year = {2006}, language = {en} }