@incollection{HoffschmidtAlexopoulosRauetal.2012, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, P. and Hilger, Patrick}, title = {Concentrating solar power}, series = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, volume = {3}, booktitle = {Comprehensive renewable energy / ed. Ali Sayigh. Vol. 3: Solar thermal systems: components and applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-08-087872-0}, doi = {10.1016/B978-0-08-087872-0.00319-X}, pages = {595 -- 636}, year = {2012}, language = {en} } @inproceedings{SattlerAlexopoulosChicoCaminosetal.2019, author = {Sattler, Johannes Christoph and Alexopoulos, Spiros and Chico Caminos, Ricardo Alexander and Mitchell, John C. and Ruiz, Victor C. and Kalogirou, Soteris and Ktistis, Panayiotis K. and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Dynamic simulation model of a parabolic trough collector system with concrete thermal energy storage for process steam generation}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117663}, pages = {150007-1 -- 150007-8}, year = {2019}, language = {en} } @inproceedings{GoettscheKornAmato2015, author = {G{\"o}ttsche, Joachim and Korn, Michael and Amato, Alexandre}, title = {The Passivhaus concept for the Arabian Peninsula - An energetic-economical evaluation considering the thermal comfort}, series = {QScience Proceedings: Vol 2015}, booktitle = {QScience Proceedings: Vol 2015}, doi = {10.5339/qproc.2015.qgbc.38}, pages = {8 Seiten}, year = {2015}, abstract = {The Passivhaus building standard is a concept developed for the realization of energy-efficient and economical buildings with a simultaneous high utilization comfort under European climate conditions. Major elements of the Passivhaus concept are a high thermal insulation of the external walls, the use of heat and/or solar shading glazing as well as an airtight building envelope in combination with energy-efficient technical building installations and heating or cooling generators, such as an efficient energy-recovery in the building air-conditioning. The objective of this research project is the inquiry to determine the parameters or constraints under which the Passivhaus concept can be implemented under the arid climate conditions in the Arabian Peninsula to achieve an energy-efficient and economical building with high utilization comfort. In cooperation between the Qatar Green Building Council (QGBC), Barwa Real Estate (BRE) and Kahramaa the first Passivhaus was constructed in Qatar and on the Arabian Peninsula in 2013. The Solar-Institut J{\"u}lich of Aachen University of Applied Science supports the Qatar Green Building Council with a dynamic building and equipment simulation of the Passivhaus and the neighbouring reference building. This includes simulation studies with different component configurations for the building envelope and different control strategies for heating or cooling systems as well as the air conditioning of buildings to find an energetic-economical optimum. Part of these analyses is the evaluation of the energy efficiency of the used energy recovery system in the Passivhaus air-conditioning and identification of possible energy-saving effects by the use of a bypass function integrated in the heat exchanger. In this way it is expected that on an annual basis the complete electricity demand of the building can be covered by the roof-integrated PV generator.}, language = {en} } @inproceedings{AnthrakidisHerrmannSchornetal.2015, author = {Anthrakidis, Anette and Herrmann, Ulf and Schorn, Christian and Schwarzer, Klemens and Wedding, Philipp and Weis, Fabian}, title = {Development and Testing of a Novel Method for the Determination of the Efficiency of Concentrating Solar Thermal Collectors}, series = {Conference Proceedings Solar World Congress 2015, Daegu, Korea, 08 - 12 November 2015}, booktitle = {Conference Proceedings Solar World Congress 2015, Daegu, Korea, 08 - 12 November 2015}, pages = {9 Seiten}, year = {2015}, language = {en} } @inproceedings{HerrmannWorringerGraeteretal.2006, author = {Herrmann, Ulf and Worringer, S. and Graeter, F. and Nava, P.}, title = {Three Years of Operation Experience of the SKAL-ET Collector Loop at SEGS V}, series = {13th International Symposium Concentrated Solar Power and Chemical Energy Technologies, June 20 - 23, 2006, Seville, Spain}, booktitle = {13th International Symposium Concentrated Solar Power and Chemical Energy Technologies, June 20 - 23, 2006, Seville, Spain}, editor = {Romero, Manuel}, publisher = {SolarPACES [u.a.]}, address = {[s.l.]}, isbn = {84-7834-519-1}, pages = {1 CD-ROM}, year = {2006}, language = {en} } @inproceedings{HerrmannGraeterNava2004, author = {Herrmann, Ulf and Graeter, F. and Nava, P.}, title = {Performance of the SKAL-ET Collector Loop at KJC Operating Company}, series = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, booktitle = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, editor = {Ramos, C.}, publisher = {Instituto de Investigaciones Electricas}, address = {[s.l.]}, isbn = {968-6114-18-1}, year = {2004}, language = {en} } @article{HerrmannKellyPrice2002, author = {Herrmann, Ulf and Kelly, Bruce and Price, Henry}, title = {Two Tank Molten Salt Storage for Parabolic Trough Solar Power Plants}, series = {Energy : the international journal}, volume = {29}, journal = {Energy : the international journal}, number = {5-6 (Special Issue SolarPaces)}, issn = {0360-5442}, doi = {10.1016/S0360-5442(03)00193-2}, pages = {883 -- 893}, year = {2002}, language = {en} } @article{DerschGeyerHerrmannetal.2004, author = {Dersch, J{\"u}rgen and Geyer, Michael and Herrmann, Ulf and Jones, Scott A. and Kelly, Bruce and Kistner, Rainer and Ortmanns, Winfried and Pitz-Paal, Robert and Price, Henry}, title = {Trough integration into power plants—a study on the performance and economy of integrated solar combined cycle systems}, series = {Energy : the international journal}, volume = {29}, journal = {Energy : the international journal}, number = {5-6 (Special Issue SolarPaces)}, issn = {0360-5442}, doi = {10.1016/S0360-5442(03)00199-3}, pages = {947 -- 959}, year = {2004}, language = {en} } @article{PuppeGiulianoFrantzetal.2018, author = {Puppe, Michael and Giuliano, Stefano and Frantz, Cathy and Uhlig, Ralf and Schumacher, Ralph and Ibraheem, Wagdi and Schmalz, Stefan and Waldmann, Barbara and Guder, Christoph and Peter, Dennis and Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Alexopoulos, Spiros and Spiegel, Michael and Wortmann, J{\"u}rgen and Hinrichs, Matthias and Engelhard, Manfred and Aust, Michael}, title = {Techno-economic optimization of molten salt solar tower plants}, series = {AIP Conference Proceedings art.no. 040033}, volume = {2033}, journal = {AIP Conference Proceedings art.no. 040033}, number = {Issue 1}, publisher = {AIP Publishing}, address = {Melville, NY}, doi = {10.1063/1.5067069}, year = {2018}, abstract = {In this paper the results of a techno-economic analysis of improved and optimized molten salt solar tower plants (MSSTP plants) are presented. The potential improvements that were analyzed include different receiver designs, different designs of the HTF-system and plant control, increased molten salt temperatures (up to 640°C) and multi-tower systems. Detailed technological and economic models of the solar field, solar receiver and high temperature fluid system (HTF-system) were developed and used to find potential improvements compared to a reference plant based on Solar Two technology and up-to-date cost estimations. The annual yield model calculates the annual outputs and the LCOE of all variants. An improved external tubular receiver and improved HTF-system achieves a significant decrease of LCOE compared to the reference. This is caused by lower receiver cost as well as improvements of the HTF-system and plant operation strategy, significantly reducing the plant own consumption. A novel star receiver shows potential for further cost decrease. The cavity receiver concepts result in higher LCOE due to their high investment cost, despite achieving higher efficiencies. Increased molten salt temperatures seem possible with an adapted, closed loop HTF-system and achieve comparable results to the original improved system (with 565°C) under the given boundary conditions. In this analysis all multi tower systems show lower economic viability compared to single tower systems, caused by high additional cost for piping connections and higher cost of the receivers. REFERENCES}, language = {en} } @inproceedings{AringhoffGeyerHerrmannetal.2002, author = {Aringhoff, R. and Geyer, Michael and Herrmann, Ulf and Kistner, Rainer and Nava, P. and Osuna, R.}, title = {AndaSol : 50MW Solar Plants with 9 Hour Storage for Southern Spain}, series = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, booktitle = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, editor = {Steinfeld, Aldo}, publisher = {Paul Scherrer Inst.}, address = {Villingen}, isbn = {3-9521409-3-7}, pages = {37 -- 42}, year = {2002}, language = {en} } @inproceedings{HerrmannKellyPrice2002, author = {Herrmann, Ulf and Kelly, Bruce and Price, Henry}, title = {Two Tank Molten Salt Storage for Parabolic Trough Solar Power Plants}, series = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, booktitle = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, editor = {Steinfeld, Aldo}, publisher = {Paul Scherrer Inst.}, address = {Villingen}, isbn = {3-9521409-3-7}, pages = {517 -- 524}, year = {2002}, language = {en} } @inproceedings{JanotteFecklerKoetteretal.2014, author = {Janotte, N. and Feckler, G. and K{\"o}tter, Jens and Decker, Stefan and Herrmann, Ulf and Schmitz, Mark and L{\"u}pfert, E.}, title = {Dynamic performance evaluation of the HelioTrough® collector demonstration loop : towards a new benchmark in parabolic trough qualification}, series = {SolarPACES International Conference 2013, Las Vegas, Nevada, USA, 17 - 20 September 2013 : [proceedings]. - Pt. 1. - (Energy procedia ; 49)}, booktitle = {SolarPACES International Conference 2013, Las Vegas, Nevada, USA, 17 - 20 September 2013 : [proceedings]. - Pt. 1. - (Energy procedia ; 49)}, publisher = {Curran}, address = {Red Hook, NY}, isbn = {978-1-63266-904-9}, issn = {1876-6102}, doi = {10.1016/j.egypro.2014.03.012}, pages = {109 -- 117}, year = {2014}, language = {en} } @article{GorzalkaSchmiedtSchorn2021, author = {Gorzalka, Philip and Schmiedt, Jacob Estevam and Schorn, Christian}, title = {Automated Generation of an Energy Simulation Model for an Existing Building from UAV Imagery}, series = {Buildings}, volume = {11}, journal = {Buildings}, number = {9}, publisher = {MDPI}, address = {Basel}, issn = {2075-5309}, doi = {10.3390/buildings11090380}, pages = {15 Seiten}, year = {2021}, abstract = {An approach to automatically generate a dynamic energy simulation model in Modelica for a single existing building is presented. It aims at collecting data about the status quo in the preparation of energy retrofits with low effort and costs. The proposed method starts from a polygon model of the outer building envelope obtained from photogrammetrically generated point clouds. The open-source tools TEASER and AixLib are used for data enrichment and model generation. A case study was conducted on a single-family house. The resulting model can accurately reproduce the internal air temperatures during synthetical heating up and cooling down. Modelled and measured whole building heat transfer coefficients (HTC) agree within a 12\% range. A sensitivity analysis emphasises the importance of accurate window characterisations and justifies the use of a very simplified interior geometry. Uncertainties arising from the use of archetype U-values are estimated by comparing different typologies, with best- and worst-case estimates showing differences in pre-retrofit heat demand of about ±20\% to the average; however, as the assumptions made are permitted by some national standards, the method is already close to practical applicability and opens up a path to quickly estimate possible financial and energy savings after refurbishment.}, language = {en} } @inproceedings{KellyHerrmannHale2001, author = {Kelly, Bruce and Herrmann, Ulf and Hale, M.-J.}, title = {Optimization Studies for Integrated Solar Combined Cycle Systems}, series = {Solar engineering 2001 : proceedings of the International Solar Energy Conference ; presented at the 2001 International Solar Energy Conference, a part of Forum 2001 - Solar energy: the power to choose, April 21 - 25, 2001, Washington, D.C.}, booktitle = {Solar engineering 2001 : proceedings of the International Solar Energy Conference ; presented at the 2001 International Solar Energy Conference, a part of Forum 2001 - Solar energy: the power to choose, April 21 - 25, 2001, Washington, D.C.}, publisher = {ASME}, address = {New York, NY}, isbn = {0-7918-1670-2}, pages = {393 -- 398}, year = {2001}, language = {en} } @incollection{HerrmannKearneyRoegeretal.2017, author = {Herrmann, Ulf and Kearney, D. and R{\"o}ger, M. and Prahl, C.}, title = {System performance measurements}, series = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, booktitle = {The Performance of Concentrated Solar Power (CSP) Systems : Modelling, Measurement and Assessment}, publisher = {Woodhead Publishing}, address = {Duxford}, isbn = {978-0-08-100448-7}, doi = {https://doi.org/10.1016/B978-0-08-100447-0.00005-5}, pages = {115 -- 165}, year = {2017}, abstract = {This chapter introduces performance and acceptance testing and describes state-of-the-art tools, methods, and instruments to assess the plant performance or realize plant acceptance testing. The status of the development of standards for performance assessment is given.}, language = {en} } @article{SattlerRoegerSchwarzboezletal.2020, author = {Sattler, Johannes Christoph and R{\"o}ger, Marc and Schwarzb{\"o}zl, Peter and Buck, Reiner and Macke, Ansgar and Raeder, Christian and G{\"o}ttsche, Joachim}, title = {Review of heliostat calibration and tracking control methods}, series = {Solar Energy}, volume = {207}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.solener.2020.06.030}, pages = {110 -- 132}, year = {2020}, abstract = {Large scale central receiver systems typically deploy between thousands to more than a hundred thousand heliostats. During solar operation, each heliostat is aligned individually in such a way that the overall surface normal bisects the angle between the sun's position and the aim point coordinate on the receiver. Due to various tracking error sources, achieving accurate alignment ≤1 mrad for all the heliostats with respect to the aim points on the receiver without a calibration system can be regarded as unrealistic. Therefore, a calibration system is necessary not only to improve the aiming accuracy for achieving desired flux distributions but also to reduce or eliminate spillage. An overview of current larger-scale central receiver systems (CRS), tracking error sources and the basic requirements of an ideal calibration system is presented. Leading up to the main topic, a description of general and specific terms on the topics heliostat calibration and tracking control clarifies the terminology used in this work. Various figures illustrate the signal flows along various typical components as well as the corresponding monitoring or measuring devices that indicate or measure along the signal (or effect) chain. The numerous calibration systems are described in detail and classified in groups. Two tables allow the juxtaposition of the calibration methods for a better comparison. In an assessment, the advantages and disadvantages of individual calibration methods are presented.}, language = {en} } @incollection{HoffschmidtAlexopoulosRauetal.2022, author = {Hoffschmidt, Bernhard and Alexopoulos, Spiros and Rau, Christoph and Sattler, Johannes Christoph and Anthrakidis, Anette and Teixeira Boura, Cristiano Jos{\´e} and O'Connor, B. and Chico Caminos, Ricardo Alexander and Rend{\´o}n, C. and Hilger, P.}, title = {Concentrating solar power}, series = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, booktitle = {Comprehensive Renewable Energy (Second Edition) / Volume 3: Solar Thermal Systems: Components and Applications}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {978-0-12-819734-9}, pages = {670 -- 724}, year = {2022}, abstract = {The focus of this chapter is the production of power and the use of the heat produced from concentrated solar thermal power (CSP) systems. The chapter starts with the general theoretical principles of concentrating systems including the description of the concentration ratio, the energy and mass balance. The power conversion systems is the main part where solar-only operation and the increase in operational hours. Solar-only operation include the use of steam turbines, gas turbines, organic Rankine cycles and solar dishes. The operational hours can be increased with hybridization and with storage. Another important topic is the cogeneration where solar cooling, desalination and of heat usage is described. Many examples of commercial CSP power plants as well as research facilities from the past as well as current installed and in operation are described in detail. The chapter closes with economic and environmental aspects and with the future potential of the development of CSP around the world.}, language = {en} } @article{GoettscheHoffschmidtSchmitzetal.2009, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Sauerborn, Markus}, title = {Solar Concentrating Systems Using Small Mirror Arrays / G{\"o}ttsche, Joachim ; Hoffschmidt, Bernhard ; Schmitz, Stefan ; Sauerborn, Markus ; Buck, Reiner ; Teufel, Edgar ; Badst{\"u}bner, Karin ; Ifland, David ; Rebholz, Christian}, series = {Proceedings of the 2nd International Conference on Energy Sustainability - 2008 : : presented ... August 10 - 14, 2008, Jacksonville, Florida, USA / sponsored by Advanced Energy Systems Division, ASME; Solar Energy Division, ASME}, journal = {Proceedings of the 2nd International Conference on Energy Sustainability - 2008 : : presented ... August 10 - 14, 2008, Jacksonville, Florida, USA / sponsored by Advanced Energy Systems Division, ASME; Solar Energy Division, ASME}, publisher = {ASME}, address = {New York, NY}, isbn = {9780791843208}, pages = {1 -- 5}, year = {2009}, language = {en} } @inproceedings{MayBreitbachAlexopoulosetal.2019, author = {May, Martin and Breitbach, Gerd and Alexopoulos, Spiros and Latzke, Markus and B{\"a}umer, Klaus and Uhlig, Ralf and S{\"o}hn, Matthias and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Experimental facility for investigations of wire mesh absorbers for pressurized gases}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, issn = {0094243X}, doi = {10.1063/1.5117547}, pages = {030035-1 -- 030035-9}, year = {2019}, language = {en} } @article{GoettscheHoffschmidtSchmitzetal.2010, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Schmitz, Stefan and Sauerborn, Markus}, title = {Solar Concentrating Systems Using Small Mirror Arrays}, series = {Journal of solar energy engineering}, volume = {Vol. 132}, journal = {Journal of solar energy engineering}, number = {Iss. 1}, isbn = {0199-6231}, pages = {4 S.}, year = {2010}, language = {en} } @article{GoettscheHoffschmidtAlexopoulosetal.2008, author = {G{\"o}ttsche, Joachim and Hoffschmidt, Bernhard and Alexopoulos, Spiros and Funke, J. and Schwarzb{\"o}zl, P.}, title = {First Simulation Results for the Hybridization of Small Solar Power Tower Plants}, series = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings, 2008-10-07 - 2008-10-10, Lissabon (Portugal). Vol. 1}, journal = {EuroSun 2008 : 1st International Conference on Solar Heating, Cooling and Buildings, 2008-10-07 - 2008-10-10, Lissabon (Portugal). Vol. 1}, publisher = {Sociedade Portuguesa De Energia Solar (SPES)}, address = {Lisbon}, isbn = {978-1-61782-228-5}, pages = {1299 -- 1306}, year = {2008}, language = {en} } @article{HenneckeSchwarzboezlHoffschmidtetal.2007, author = {Hennecke, Klaus and Schwarzb{\"o}zl, Peter and Hoffschmidt, Bernhard and G{\"o}ttsche, Joachim and Koll, G. and Beuter, M. and Hartz, T.}, title = {The solar power tower J{\"u}lich - a solar thermal power plant for test and demonstration of air receiver}, series = {Solar energy and human settlement : Elektronische Ressource : proceedings of ISES world congress 2007 ; (Vol. I - Vol. V) / [ISES Solar World Congress. ISES, International Solar Energy Society]. D. Yogi Goswami ; Yuwen Zhao}, journal = {Solar energy and human settlement : Elektronische Ressource : proceedings of ISES world congress 2007 ; (Vol. I - Vol. V) / [ISES Solar World Congress. ISES, International Solar Energy Society]. D. Yogi Goswami ; Yuwen Zhao}, publisher = {Tsinghua Univ. Press}, address = {Beijing}, isbn = {978-7-302-16146-2}, pages = {1749 -- 1753}, year = {2007}, language = {en} } @inproceedings{SchwagerTeixeiraBouraFleschetal.2019, author = {Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Flesch, Robert and Alexopoulos, Spiros and Herrmann, Ulf}, title = {Improved efficiency prediction of a molten salt receiver based on dynamic cloud passage simulation}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, number = {1}, isbn = {978-0-7354-1866-0}, doi = {10.1063/1.5117566}, pages = {030054-1 -- 030054-8}, year = {2019}, language = {en} } @article{KearneyHerrmannNavaetal.2003, author = {Kearney, D. and Herrmann, Ulf and Nava, P. and Kelly, B. and Mahoney, R. and Pacheco, J. and Cable, R. and Potrovitza, N. and Blake, D. and Price, H.}, title = {Assessment of a Molten Salt Heat Transfer Fluid in a Parabolic Trough Solar Field}, series = {Journal of Solar Energy Engineering}, volume = {125}, journal = {Journal of Solar Energy Engineering}, number = {2}, issn = {1528-8986}, doi = {10.1115/1.1565087}, pages = {170 -- 176}, year = {2003}, language = {en} } @article{RauAlexopoulosBreitbachetal.2014, author = {Rau, Christoph and Alexopoulos, Spiros and Breitbach, Gerd and Hoffschmidt, Bernhard and Latzke, Markus and Sattler, Johannes Christoph}, title = {Transient simulation of a solar-hybrid tower power plant with open volumetric receiver at the location Barstow}, series = {Energy procedia : proceedings of the SolarPACES 2013 International Conference}, volume = {49}, journal = {Energy procedia : proceedings of the SolarPACES 2013 International Conference}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1876-6102}, doi = {10.1016/j.egypro.2014.03.157}, pages = {1481 -- 1490}, year = {2014}, abstract = {In this work the transient simulations of four hybrid solar tower power plant concepts with open-volumetric receiver technology for a location in Barstow-Daggett, USA, are presented. The open-volumetric receiver uses ambient air as heat transfer fluid and the hybridization is realized with a gas turbine. The Rankine cycle is heated by solar-heated air and/or by the gas turbine's flue gases. The plant can be operated in solar-only, hybrid parallel or combined cycle-only mode as well as in any intermediate load levels where the solar portion can vary between 0 to 100\%. The simulated plant is based on the configuration of a solar-hybrid power tower project, which is in planning for a site in Northern Algeria. The meteorological data for Barstow-Daggett was taken from the software meteonorm. The solar power tower simulation tool has been developed in the simulation environment MATLAB/Simulink and is validated.}, language = {en} } @article{GoettscheGabryschDelahayeetal.2002, author = {G{\"o}ttsche, Joachim and Gabrysch, K. and Delahaye, A. and Schwarzer, Klemens}, title = {Solar-Campus Juelich - Energy performance and indoor climate}, series = {AIVC 23rd conference - EPIC 2002 AIVC (in conjunction with 3rd European Conference on Energy Performance and Indoor Climate in Buildings) - 23-26 October 2002 - Lyon - France - vol 2}, journal = {AIVC 23rd conference - EPIC 2002 AIVC (in conjunction with 3rd European Conference on Energy Performance and Indoor Climate in Buildings) - 23-26 October 2002 - Lyon - France - vol 2}, pages = {381 -- 386}, year = {2002}, language = {en} } @inproceedings{TeixeiraBouraNiederwestbergMcLeodetal.2016, author = {Teixeira Boura, Cristiano Jos{\´e} and Niederwestberg, Stefan and McLeod, Jacqueline and Herrmann, Ulf and Hoffschmidt, Bernhard}, title = {Development of heat exchanger for high temperature energy storage with bulk materials}, series = {AIP Conference Proceedings}, volume = {1734}, booktitle = {AIP Conference Proceedings}, number = {1}, doi = {10.1063/1.4949106}, pages = {050008-1 -- 050008-7}, year = {2016}, language = {en} } @inproceedings{BlankeDringVonteinetal.2018, author = {Blanke, Tobias and Dring, Bernd and Vontein, Marius and Kuhnhenne, Markus}, title = {Climate Change Mitigation Potentials of Vertical Building Integrated Photovoltaic}, series = {8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden}, booktitle = {8th International Workshop on Integration of Solar Power into Power Systems : 16-17 October 2018, Stockholm, Sweden}, pages = {1 -- 7}, year = {2018}, language = {en} } @inproceedings{MahdiRendonSchwageretal.2019, author = {Mahdi, Zahra and Rend{\´o}n, Carlos and Schwager, Christian and Teixeira Boura, Cristiano Jos{\´e} and Herrmann, Ulf}, title = {Novel concept for indirect solar-heated methane reforming}, series = {AIP Conference Proceedings}, volume = {2126}, booktitle = {AIP Conference Proceedings}, publisher = {AIP Publishing}, address = {Melville, NY}, issn = {0094-243X}, doi = {10.1063/1.5117694}, pages = {180014-1 -- 180014-7}, year = {2019}, language = {en} } @article{GoettscheGoetzbergerDengleretal.1992, author = {G{\"o}ttsche, Joachim and Goetzberger, Adolf and Dengler, J. and Rommel, M. (u.a.)}, title = {A new transparently insulated, bifacially irradiated solar flat-plate collector / A. Goetzberger ; J. Dengler ; M. Rommel ; J. G{\"o}ttsche ; V. Wittwer}, series = {Solar energy. 49 (1992), H. 5}, journal = {Solar energy. 49 (1992), H. 5}, isbn = {0038-092X}, pages = {403 -- 411}, year = {1992}, language = {en} } @inproceedings{AlexopoulosHoffschmidtRauetal.2012, author = {Alexopoulos, Spiros and Hoffschmidt, Bernhard and Rau, Christoph and Sattler, Johannes Christoph}, title = {Simulation of hybrid solar tower power plants}, series = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 5}, booktitle = {30th ISES Biennial Solar World Congress 2011 : Kassel, Germany, 28 August - 2 September 2011. Vol. 5}, publisher = {Curran}, address = {Red Hook, NY}, organization = {International Solar Energy Society}, pages = {4044 -- 4050}, year = {2012}, language = {en} } @article{GoettscheHove1999, author = {G{\"o}ttsche, Joachim and Hove, T.}, title = {Mapping global, diffuse and beam solar radiation over Zimbabwe / T. Hove ; J. G{\"o}ttsche}, series = {Renewable energy. 18 (1999), H. 4}, journal = {Renewable energy. 18 (1999), H. 4}, isbn = {1879-0682}, pages = {535 -- 556}, year = {1999}, language = {en} } @article{Goettsche1994, author = {G{\"o}ttsche, Joachim}, title = {Eldorado summer schools}, series = {Progress in solar energy education. 3 (1994)}, journal = {Progress in solar energy education. 3 (1994)}, isbn = {1018-5607}, pages = {31 -- 33}, year = {1994}, language = {en} } @inproceedings{MohanGrossMenzeletal.2021, author = {Mohan, Nijanthan and Groß, Rolf Fritz and Menzel, Karsten and Theis, Fabian}, title = {Opportunities and Challenges in the Implementation of Building Information Modeling for Prefabrication of Heating, Ventilation and Air Conditioning Systems in Small and Medium-Sized Contracting Companies in Germany - A Case Study}, series = {WIT Transactions on The Built Environment, Vol. 205}, booktitle = {WIT Transactions on The Built Environment, Vol. 205}, publisher = {WIT Press}, address = {Southampton}, issn = {1743-3509}, doi = {10.2495/BIM210101}, pages = {117 -- 126}, year = {2021}, abstract = {Even though BIM (Building Information Modelling) is successfully implemented in most of the world, it is still in the early stages in Germany, since the stakeholders are sceptical of its reliability and efficiency. The purpose of this paper is to analyse the opportunities and obstacles to implementing BIM for prefabrication. Among all other advantages of BIM, prefabrication is chosen for this paper because it plays a vital role in creating an impact on the time and cost factors of a construction project. The project stakeholders and participants can explicitly observe the positive impact of prefabrication, which enables the breakthrough of the scepticism factor among the small-scale construction companies. The analysis consists of the development of a process workflow for implementing prefabrication in building construction followed by a practical approach, which was executed with two case studies. It was planned in such a way that, the first case study gives a first-hand experience for the workers at the site on the BIM model so that they can make much use of the created BIM model, which is a better representation compared to the traditional 2D plan. The main aim of the first case study is to create a belief in the implementation of BIM Models, which was succeeded by the execution of offshore prefabrication in the second case study. Based on the case studies, the time analysis was made and it is inferred that the implementation of BIM for prefabrication can reduce construction time, ensures minimal wastes, better accuracy, less problem-solving at the construction site. It was observed that this process requires more planning time, better communication between different disciplines, which was the major obstacle for successful implementation. This paper was carried out from the perspective of small and medium-sized mechanical contracting companies for the private building sector in Germany.}, language = {en} } @inproceedings{GorzalkaDahlkeGoettscheetal.2018, author = {Gorzalka, Philip and Dahlke, Dennis and G{\"o}ttsche, Joachim and Israel, Martin and Patel, Dhruvkumar and Prahl, Christoph and Schmiedt, Jacob Estevam and Frommholz, Dirk and Hoffschmidt, Bernhard and Linkiewicz, Magdalena}, title = {Building Tomograph-From Remote Sensing Data of Existing Buildings to Building Energy Simulation Input}, series = {EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria}, booktitle = {EBC, Annex 71, Fifth expert meeting, October 17-19, 2018, Innsbruck, Austria}, pages = {17 Seiten}, year = {2018}, language = {en} } @inproceedings{DerschGeyerHerrmannetal.2002, author = {Dersch, J{\"u}rgen and Geyer, Michael and Herrmann, Ulf and Jones, Scott A. and Kelly, Bruce and Kistner, Rainer and Ortmanns, Winfried and Pitz-Paal, Robert and Price, Henry}, title = {Trough integration into power plants : a study on the performance and economy of integrated solar combined cycle systems}, series = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, booktitle = {Proceedings of the 11th SolarPACES International Symposium on Concentrated Solar Power and Chemical Energy Technologies : September 4 - 6, 2002, Zurich, Switzerland / Paul Scherrer Institut, PSI; ETH, Eidgen{\"o}ssische Technische Hochschule Z{\"u}rich}, editor = {Steinfeld, Aldo}, publisher = {Paul Scherrer Inst.}, address = {Villingen}, isbn = {3-9521409-3-7}, pages = {661 -- 671}, year = {2002}, language = {en} } @inproceedings{HahneHerrmannRheinlaender1997, author = {Hahne, E. and Herrmann, Ulf and Rheinl{\"a}nder, J.}, title = {The Effect of Tilt on Flow Pattern of Water/Steam Flow Through Heated Tubes}, series = {Experimental heat transfer, fluid mechanics and thermodynamics 1997 : proceedings of the 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, June 2 - 6, 1997. - Vol. 2}, booktitle = {Experimental heat transfer, fluid mechanics and thermodynamics 1997 : proceedings of the 4th World Conference on Experimental Heat Transfer, Fluid Mechanics and Thermodynamics, Brussels, June 2 - 6, 1997. - Vol. 2}, editor = {Girot, Michel}, publisher = {Ed. ETS}, address = {Pisa}, isbn = {88-467-0014-7}, pages = {925 -- 934}, year = {1997}, language = {en} } @inproceedings{DerschGeyerHerrmannetal.2002, author = {Dersch, J{\"u}rgen and Geyer, Michael and Herrmann, Ulf and Jones, Scott A. and Kelly, Bruce and Kistner, Rainer and Ortmanns, Winfried and Pitz-Paal, Robert and Price, Henry}, title = {Solar Trough Integration Into Combined Cycle Systems}, series = {Solar engineering 2002 : proceedings of the International Solar Energy Conference ; presented at the 2002 International Solar Energy Conference, a part of Solar 2002 - Sunrise on the Reliable Energy Economy, June 15 - 20, 2002, Reno, Nevada}, booktitle = {Solar engineering 2002 : proceedings of the International Solar Energy Conference ; presented at the 2002 International Solar Energy Conference, a part of Solar 2002 - Sunrise on the Reliable Energy Economy, June 15 - 20, 2002, Reno, Nevada}, editor = {Pearson, J. Boise}, publisher = {ASME}, isbn = {0-7918-1689-3}, doi = {doi:10.1115/SED2002-1072}, pages = {351 -- 359}, year = {2002}, language = {en} } @article{HerrmannKearney2002, author = {Herrmann, Ulf and Kearney, David W.}, title = {Survey of Thermal Energy Storage for Parabolic Trough Power Plants}, series = {Journal of Solar Energy Engineering}, volume = {124}, journal = {Journal of Solar Energy Engineering}, number = {2}, issn = {1528-8986 (Online)}, doi = {10.1115/1.1467601}, pages = {145 -- 152}, year = {2002}, language = {en} } @article{KearneyKellyHerrmannetal.2002, author = {Kearney, David W. and Kelly, Bruce and Herrmann, Ulf and Cable, R. and Pacheco, J. and Mahoney, R. and Price, Henry and Blake, D. and Nava, P. and Potrovitza, N.}, title = {Engineering Aspects of a Molten Salt Heat Transfer Fluid in a Trough Solar Field}, series = {Energy : the international journal}, volume = {29}, journal = {Energy : the international journal}, number = {5-6 (Special Issue SolarPaces)}, issn = {0360-5442}, doi = {10.1016/S0360-5442(03)00191-9}, pages = {861 -- 870}, year = {2002}, language = {en} } @inproceedings{LuepfertHerrmannPriceetal.2004, author = {L{\"u}pfert, E. and Herrmann, Ulf and Price, Henry and Zarza, E. and Kistener, R.}, title = {Towards Standard Performance Analysis for Parabolic Trough Collector Fields}, series = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, booktitle = {12th International Symposium Solar Power and Chemical Energy Systems, October 6-8, 2004, Oaxaca Mexico ; SolarPACES International Symposium, 12}, editor = {Ramos, C.}, publisher = {Instituto de Investigaciones Electricas}, address = {[s.l.]}, isbn = {968-6114-18-1}, year = {2004}, language = {en} } @inproceedings{HerrmannVorbruggNava2009, author = {Herrmann, Ulf and Vorbrugg, O. and Nava, P.}, title = {Construction and Commissioning Process of the Andasol Solar Field}, series = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, booktitle = {SolarPACES 2009 : electricity, fuels and clean water powered by the sun ; 15 - 18 September 2009, Berlin, Germany ; the 15th SolarPACES conference ; proceedings}, publisher = {Deutsches Zentrum f{\"u}r Luft- u. Raumfahrt}, address = {Stuttgart}, isbn = {978-3-00-028755-8}, pages = {1 CD-ROM}, year = {2009}, language = {en} } @article{DammSauerbornFendetal.2017, author = {Damm, Marc Andr{\´e} and Sauerborn, Markus and Fend, Thomas and Herrmann, Ulf}, title = {Optimisation of a urea selective catalytic reduction system with a coated ceramic mixing element}, series = {Journal of ceramic science and technology}, volume = {8}, journal = {Journal of ceramic science and technology}, number = {1}, publisher = {G{\"o}ller}, address = {Baden-Baden}, isbn = {2190-9385 (Print)}, issn = {2190-9385 (Online)}, doi = {10.4416/JCST2016-00056}, pages = {19 -- 24}, year = {2017}, language = {en} } @article{HerrmannLippke1999, author = {Herrmann, Ulf and Lippke, F.}, title = {The influence of transients on the design of DSG solar fields}, series = {Journal de Physique IV : proceedings}, volume = {9}, journal = {Journal de Physique IV : proceedings}, number = {PR3}, isbn = {2-86883-402-7}, issn = {1764-7177 (Online)}, doi = {10.1051/jp4:1999377}, pages = {489 -- 494}, year = {1999}, language = {en} } @inproceedings{HerrmannRheinlaenderLippke1997, author = {Herrmann, Ulf and Rheinl{\"a}nder, J. and Lippke, F.}, title = {Solar Fields for Direct Steam Generation in Parabolic Trough Collectors}, series = {Components, tools, facilities and measurement techniques. - (Solar thermal concentrating technologies : proceedings of the 8th international symposium, October, 6 - 11, 1996, K{\"o}ln, Germany ; Vol. 2)}, booktitle = {Components, tools, facilities and measurement techniques. - (Solar thermal concentrating technologies : proceedings of the 8th international symposium, October, 6 - 11, 1996, K{\"o}ln, Germany ; Vol. 2)}, editor = {Becker, Manfred}, publisher = {M{\"u}ller}, address = {Heidelberg}, isbn = {3-7880-7616-X}, pages = {815 -- 834}, year = {1997}, language = {en} }