@article{MuschallikMolinnusBongaertsetal.2017, author = {Muschallik, Lukas and Molinnus, Denise and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Siegert, Petra and Selmer, Thorsten}, title = {(R,R)-Butane-2,3-diol Dehydrogenase from Bacillus clausii DSM 8716T: Cloning and Expression of the bdhA-Gene, and Initial Characterization of Enzyme}, series = {Journal of Biotechnology}, volume = {258}, journal = {Journal of Biotechnology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0168-1656}, doi = {10.1016/j.jbiotec.2017.07.020}, pages = {41 -- 50}, year = {2017}, abstract = {The gene encoding a putative (R,R)-butane-2,3-diol dehydrogenase (bdhA) from Bacillus clausii DSM 8716T was isolated, sequenced and expressed in Escherichia coli. The amino acid sequence of the encoded protein is only distantly related to previously studied enzymes (identity 33-43\%) and exhibited some uncharted peculiarities. An N-terminally StrepII-tagged enzyme variant was purified and initially characterized. The isolated enzyme catalyzed the (R)-specific oxidation of (R,R)- and meso-butane-2,3-diol to (R)- and (S)-acetoin with specific activities of 12 U/mg and 23 U/mg, respectively. Likewise, racemic acetoin was reduced with a specific activity of up to 115 U/mg yielding a mixture of (R,R)- and meso-butane-2,3-diol, while the enzyme reduced butane-2,3-dione (Vmax 74 U/mg) solely to (R,R)-butane-2,3-diol via (R)-acetoin. For these reactions only activity with the co-substrates NADH/NAD+ was observed. The enzyme accepted a selection of vicinal diketones, α-hydroxy ketones and vicinal diols as alternative substrates. Although the physiological function of the enzyme in B. clausii remains elusive, the data presented herein clearly demonstrates that the encoded enzyme is a genuine (R,R)-butane-2,3-diol dehydrogenase with potential for applications in biocatalysis and sensor development.}, language = {en} } @article{MuschallikMolinnusJablonskietal.2020, author = {Muschallik, Lukas and Molinnus, Denise and Jablonski, Melanie and Kipp, Carina Ronja and Bongaerts, Johannes and Pohl, Martina and Wagner, Torsten and Sch{\"o}ning, Michael Josef and Selmer, Thorsten and Siegert, Petra}, title = {Synthesis of α-hydroxy ketones and vicinal (R, R)-diols by Bacillus clausii DSM 8716ᵀ butanediol dehydrogenase}, series = {RSC Advances}, volume = {10}, journal = {RSC Advances}, publisher = {Royal Society of Chemistry (RSC)}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/D0RA02066D}, pages = {12206 -- 12216}, year = {2020}, abstract = {α-hydroxy ketones (HK) and 1,2-diols are important building blocks for fine chemical synthesis. Here, we describe the R-selective 2,3-butanediol dehydrogenase from B. clausii DSM 8716ᵀ (BcBDH) that belongs to the metal-dependent medium chain dehydrogenases/reductases family (MDR) and catalyzes the selective asymmetric reduction of prochiral 1,2-diketones to the corresponding HK and, in some cases, the reduction of the same to the corresponding 1,2-diols. Aliphatic diketones, like 2,3-pentanedione, 2,3-hexanedione, 5-methyl-2,3-hexanedione, 3,4-hexanedione and 2,3-heptanedione are well transformed. In addition, surprisingly alkyl phenyl dicarbonyls, like 2-hydroxy-1-phenylpropan-1-one and phenylglyoxal are accepted, whereas their derivatives with two phenyl groups are not substrates. Supplementation of Mn²⁺ (1 mM) increases BcBDH's activity in biotransformations. Furthermore, the biocatalytic reduction of 5-methyl-2,3-hexanedione to mainly 5-methyl-3-hydroxy-2-hexanone with only small amounts of 5-methyl-2-hydroxy-3-hexanone within an enzyme membrane reactor is demonstrated.}, language = {en} } @article{PilasIkenSelmeretal.2015, author = {Pilas, Johanna and Iken, Heiko and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Development of a multi-parameter sensor chip for the simultaneous detection of organic compounds in biogas processes}, series = {Physica status solidi (a)}, volume = {212}, journal = {Physica status solidi (a)}, number = {6}, publisher = {Wiley}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201431894}, pages = {1306 -- 1312}, year = {2015}, abstract = {An enzyme-based multi-parameter biosensor is developed for monitoring the concentration of formate, d-lactate, and l-lactate in biological samples. The sensor is based on the specific dehydrogenation by an oxidized β-nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenase (formate dehydrogenase, d-lactic dehydrogenase, and l-lactic dehydrogenase, respectively) in combination with a diaphorase from Clostridium kluyveri (EC 1.8.1.4). The enzymes are immobilized on a platinum working electrode by cross-linking with glutaraldehyde (GA). The principle of the determination scheme in case of l-lactate is as follows: l-lactic dehydrogenase (l-LDH) converts l-lactate into pyruvate by reaction with NAD+. In the presence of hexacyanoferrate(III), the resulting reduced β-nicotinamide adenine dinucleotide (NADH) is then regenerated enzymatically by diaphorase. The electrochemical detection is based on the current generated by oxidation of hexacyanoferrate(II) at an applied potential of +0.3 V vs. an Ag/AgCl reference electrode. The biosensor will be electrochemically characterized in terms of linear working range and sensitivity. Additionally, the successful practical application of the sensor is demonstrated in an extract from maize silage.}, language = {en} } @article{PilasMarianoKeusgenetal.2015, author = {Pilas, Johanna and Mariano, K. and Keusgen, M. and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Optimization of an Enzyme-based Multi-parameter Biosensor for Monitoring Biogas Processes}, series = {Procedia Engineering}, volume = {120}, journal = {Procedia Engineering}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1877-7058}, doi = {10.1016/j.proeng.2015.08.702}, pages = {532 -- 535}, year = {2015}, language = {en} } @article{PilasSelmerKeusgenetal.2019, author = {Pilas, Johanna and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Screen-printed carbon electrodes modified with graphene oxide for the design of a reagent-free NAD+-dependent biosensor array}, series = {Analytical Chemistry}, volume = {91}, journal = {Analytical Chemistry}, number = {23}, publisher = {ACS Publications}, address = {Washington}, doi = {10.1021/acs.analchem.9b04481}, pages = {15293 -- 15299}, year = {2019}, language = {en} } @article{PilasYaziciSelmeretal.2018, author = {Pilas, Johanna and Yazici, Y. and Selmer, Thorsten and Keusgen, M. and Sch{\"o}ning, Michael Josef}, title = {Application of a portable multi-analyte biosensor for organic acid determination in silage}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18051470}, pages = {12 Seiten}, year = {2018}, abstract = {Multi-analyte biosensors may offer the opportunity to perform cost-effective and rapid analysis with reduced sample volume, as compared to electrochemical biosensing of each analyte individually. This work describes the development of an enzyme-based biosensor system for multi-parametric determination of four different organic acids. The biosensor array comprises five working electrodes for simultaneous sensing of ethanol, formate, d-lactate, and l-lactate, and an integrated counter electrode. Storage stability of the biosensor was evaluated under different conditions (stored at +4 °C in buffer solution and dry at -21 °C, +4 °C, and room temperature) over a period of 140 days. After repeated and regular application, the individual sensing electrodes exhibited the best stability when stored at -21 °C. Furthermore, measurements in silage samples (maize and sugarcane silage) were conducted with the portable biosensor system. Comparison with a conventional photometric technique demonstrated successful employment for rapid monitoring of complex media.}, language = {en} } @article{PilasYaziciSelmeretal.2017, author = {Pilas, Johanna and Yazici, Yasemen and Selmer, Thorsten and Keusgen, Michael and Sch{\"o}ning, Michael Josef}, title = {Optimization of an amperometric biosensor array for simultaneous measurement of ethanol, formate, d- and l-lactate}, series = {Electrochimica Acta}, volume = {251}, journal = {Electrochimica Acta}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.07.119}, pages = {256 -- 262}, year = {2017}, abstract = {The immobilization of NAD+-dependent dehydrogenases, in combination with a diaphorase, enables the facile development of multiparametric sensing devices. In this work, an amperometric biosensor array for simultaneous determination of ethanol, formate, d- and l-lactate is presented. Enzyme immobilization on platinum thin-film electrodes was realized by chemical cross-linking with glutaraldehyde. The optimization of the sensor performance was investigated with regard to enzyme loading, glutaraldehyde concentration, pH, cofactor concentration and temperature. Under optimal working conditions (potassium phosphate buffer with pH 7.5, 2.5 mmol L-1 NAD+, 2.0 mmol L-1 ferricyanide, 25 °C and 0.4\% glutaraldehyde) the linear working range and sensitivity of the four sensor elements was improved. Simultaneous and cross-talk free measurements of four different metabolic parameters were performed successfully. The reliable analytical performance of the biosensor array was demonstrated by application in a clarified sample of inoculum sludge. Thereby, a promising approach for on-site monitoring of fermentation processes is provided.}, language = {en} } @article{RoehlenPilasDahmenetal.2018, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Dahmen, Markus and Keusgen, Michael and Selmer, Thorsten and Sch{\"o}ning, Michael Josef}, title = {Toward a Hybrid Biosensor System for Analysis of Organic and Volatile Fatty Acids in Fermentation Processes}, series = {Frontiers in Chemistry}, journal = {Frontiers in Chemistry}, number = {6}, publisher = {Frontiers}, address = {Lausanne}, doi = {10.3389/fchem.2018.00284}, pages = {Artikel 284}, year = {2018}, abstract = {Monitoring of organic acids (OA) and volatile fatty acids (VFA) is crucial for the control of anaerobic digestion. In case of unstable process conditions, an accumulation of these intermediates occurs. In the present work, two different enzyme-based biosensor arrays are combined and presented for facile electrochemical determination of several process-relevant analytes. Each biosensor utilizes a platinum sensor chip (14 × 14 mm²) with five individual working electrodes. The OA biosensor enables simultaneous measurement of ethanol, formate, d- and l-lactate, based on a bi-enzymatic detection principle. The second VFA biosensor provides an amperometric platform for quantification of acetate and propionate, mediated by oxidation of hydrogen peroxide. The cross-sensitivity of both biosensors toward potential interferents, typically present in fermentation samples, was investigated. The potential for practical application in complex media was successfully demonstrated in spiked sludge samples collected from three different biogas plants. Thereby, the results obtained by both of the biosensors were in good agreement to the applied reference measurements by photometry and gas chromatography, respectively. The proposed hybrid biosensor system was also used for long-term monitoring of a lab-scale biogas reactor (0.01 m³) for a period of 2 months. In combination with typically monitored parameters, such as gas quality, pH and FOS/TAC (volatile organic acids/total anorganic carbonate), the amperometric measurements of OA and VFA concentration could enhance the understanding of ongoing fermentation processes.}, language = {en} } @article{RoehlenPilasSchoeningetal.2017, author = {R{\"o}hlen, Desiree and Pilas, Johanna and Sch{\"o}ning, Michael Josef and Selmer, Thorsten}, title = {Development of an amperometric biosensor platform for the combined determination of l-Malic, Fumaric, and l-Aspartic acid}, series = {Applied Biochemistry and Biotechnology}, volume = {183}, journal = {Applied Biochemistry and Biotechnology}, publisher = {Springer}, address = {Berlin}, issn = {1559-0291}, doi = {10.1007/s12010-017-2578-1}, pages = {566 -- 581}, year = {2017}, abstract = {Three amperometric biosensors have been developed for the detection of L-malic acid, fumaric acid, and L -aspartic acid, all based on the combination of a malate-specific dehydrogenase (MDH, EC 1.1.1.37) and diaphorase (DIA, EC 1.8.1.4). The stepwise expansion of the malate platform with the enzymes fumarate hydratase (FH, EC 4.2.1.2) and aspartate ammonia-lyase (ASPA, EC 4.3.1.1) resulted in multi-enzyme reaction cascades and, thus, augmentation of the substrate spectrum of the sensors. Electrochemical measurements were carried out in presence of the cofactor β-nicotinamide adenine dinucleotide (NAD+) and the redox mediator hexacyanoferrate (III) (HCFIII). The amperometric detection is mediated by oxidation of hexacyanoferrate (II) (HCFII) at an applied potential of + 0.3 V vs. Ag/AgCl. For each biosensor, optimum working conditions were defined by adjustment of cofactor concentrations, buffer pH, and immobilization procedure. Under these improved conditions, amperometric responses were linear up to 3.0 mM for L-malate and fumarate, respectively, with a corresponding sensitivity of 0.7 μA mM-1 (L-malate biosensor) and 0.4 μA mM-1 (fumarate biosensor). The L-aspartate detection system displayed a linear range of 1.0-10.0 mM with a sensitivity of 0.09 μA mM-1. The sensor characteristics suggest that the developed platform provides a promising method for the detection and differentiation of the three substrates.}, language = {en} } @article{SchiffelsBaumannSelmer2011, author = {Schiffels, Johannes and Baumann, Marcus and Selmer, Thorsten}, title = {Facile analysis of short-chain fatty acids as 4-nitrophenyl esters in complex anaerobic fermentation samples by high performance liquid chromatography}, series = {Journal of Chromatography A. 1218 (2011), H. 34}, journal = {Journal of Chromatography A. 1218 (2011), H. 34}, publisher = {Elsevier}, address = {Amsterdam}, isbn = {0021-9673}, pages = {5848 -- 5851}, year = {2011}, language = {en} } @article{SchiffelsPinkenburgScheldenetal.2013, author = {Schiffels, Johannes and Pinkenburg, Olaf and Schelden, Maximilian and Aboulnaga, El-Hussiny A. A. and Baumann, Marcus and Selmer, Thorsten}, title = {An innovative cloning platform enables large-scale production and maturation of an oxygen-tolerant [NiFe]-hydrogenase from cupriavidus necator in Escherichia coli}, series = {PLOS one. 2013}, journal = {PLOS one. 2013}, publisher = {Public Library of Science}, address = {San Francisco, California}, issn = {1932-6203}, doi = {10.1371/journal.pone.0068812}, year = {2013}, language = {en} } @article{SchiffelsSelmer2015, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {A flexible toolbox to study protein-assisted metalloenzyme assembly in vitro}, series = {Biotechnology and Bioengineering}, volume = {112}, journal = {Biotechnology and Bioengineering}, number = {11}, publisher = {Wiley}, address = {Weinheim}, issn = {1097-0290}, doi = {10.1002/bit.25658}, pages = {2360 -- 2372}, year = {2015}, language = {en} } @article{SchiffelsSelmer2019, author = {Schiffels, Johannes and Selmer, Thorsten}, title = {Combinatorial assembly of ferredoxin-linked modules in Escherichia coli yields a testing platform for Rnf-complexes}, series = {Biotechnology and Bioengineering}, journal = {Biotechnology and Bioengineering}, number = {accepted article}, publisher = {Wiley}, address = {Weinheim}, doi = {10.1002/bit.27079}, pages = {1 -- 36}, year = {2019}, language = {en} } @article{SelmerAchebachUnden2005, author = {Selmer, Thorsten and Achebach, Stephanie and Unden, Gottfried}, title = {Properties and significance of apoFNR as a second form of air-inactivated [4Fe-4S]·FNR of Escherichia coli / Achebach, S. ; Selmer, T. ; Unden, G.}, series = {The FEBS Journal. 272 (2005), H. 16}, journal = {The FEBS Journal. 272 (2005), H. 16}, isbn = {1742-464X}, pages = {4260 -- 4269}, year = {2005}, language = {en} } @article{SelmerAndrei2001, author = {Selmer, Thorsten and Andrei, Paula I.}, title = {p-Hydroxyphenylacetate decarboxylase from Clostridium difficile. A novel glycyl radical enzyme catalysing the formation of p-cresol}, series = {European Journal of Biochemistry. 268 (2001), H. 5}, journal = {European Journal of Biochemistry. 268 (2001), H. 5}, isbn = {0014-2956}, pages = {1363 -- 1372}, year = {2001}, language = {en} } @article{SelmerAndreiPieriketal.2004, author = {Selmer, Thorsten and Andrei, Paula I. and Pierik, Antonio J. and Zauner, Stefan}, title = {Subunit composition of the glycyl radical enzyme p-hydroxyphenylacetate decarboxylase. A small subunit, HpdC, is essential for catalytic activity / Andrei, PI. ; Pierik, AJ. ; Zauner , S. ; Andrei-Selmer, LC. ; Selmer, T.}, series = {European Journal of Biochemistry. 271 (2004), H. 11}, journal = {European Journal of Biochemistry. 271 (2004), H. 11}, isbn = {0014-2956}, pages = {2225 -- 2230}, year = {2004}, language = {en} } @article{SelmerBrueserDahl2000, author = {Selmer, Thorsten and Br{\"u}ser, Thomas and Dahl, Christiane}, title = {ADP Sulfurylase" from Thiobacillus denitrificans Is an Adenylylsulfate:Phosphate Adenylyltransferase and Belongs to a New Family of Nucleotidyltransferases / Br{\"u}ser, Thomas ; Selmer, Thorsten ; Dahl, Christiane}, series = {Journal of Biological Chemistry. 275 (2000), H. 3}, journal = {Journal of Biological Chemistry. 275 (2000), H. 3}, isbn = {1083-351X}, pages = {1691 -- 1690}, year = {2000}, language = {en} } @article{SelmerBuckel1999, author = {Selmer, Thorsten and Buckel, Wolfgang}, title = {Oxygen Exchange between Acetate and the Catalytic Glutamate Residue in Glutaconate CoA-transferase from Acidaminococcus fermentans. IMPLICATIONS FOR THE MECHANISM OF CoA-ESTER HYDROLYSIS}, series = {Journal of Biological Chemistry. 274 (1999), H. 30}, journal = {Journal of Biological Chemistry. 274 (1999), H. 30}, isbn = {1083-351X}, pages = {20772 -- 20778}, year = {1999}, language = {en} } @article{SelmerDarleyCleggetal.2003, author = {Selmer, Thorsten and Darley, Dan J. and Clegg, William and Harrington, Ross W.}, title = {Stereocontrolled Synthesis of (2R,3S)-2-Methylisocitrate, a Central Intermediate in the Methylcitrate Cycle / Darley, Dan J. ; Selmer, Thorsten ; Clegg, William ; Harrington, Ross W. ; Buckel, Wolfgang ; Golding, Bernardt}, series = {Helvetica chimica acta. 86 (2003), H. 12}, journal = {Helvetica chimica acta. 86 (2003), H. 12}, isbn = {1522-2675}, pages = {3991 -- 3999}, year = {2003}, language = {en} } @article{SelmerFiguraSchmidtetal.1998, author = {Selmer, Thorsten and Figura, Kurt von and Schmidt, Bernhard and Dierks, T.}, title = {A novel protein modification generating an aldehyde group in sulfatases: its role in catalysis and disease / Figura, Kurt von ; Schmidt, Bernhard ; Selmer, Thorsten ; Dierks, Thomas}, series = {Bioessays. 20 (1998), H. 6}, journal = {Bioessays. 20 (1998), H. 6}, isbn = {1521-1878}, pages = {505 -- 510}, year = {1998}, language = {en} } @article{SelmerHallmannSchmidtetal.1996, author = {Selmer, Thorsten and Hallmann, Armin and Schmidt, Bernhard and Sumper, Manfred}, title = {The Evolutionary Conservation of a Novel Protein Modification, the Conversion of Cysteine to Serinesemialdehyde in Arylsulfatase from Volvox carteri / Selmer, Thorsten ; Hallmann, Armin ; Schmidt, Bernhard ; Sumper, Manfred ; Figura, Kurt von}, series = {European Journal of Biochemistry. 238 (1996), H. 2}, journal = {European Journal of Biochemistry. 238 (1996), H. 2}, isbn = {0014-2956}, pages = {341 -- 345}, year = {1996}, language = {en} } @article{SelmerHermannJessenetal.2005, author = {Selmer, Thorsten and Hermann, Gloria and Jessen, Holly and Gokarn, Ravi R.}, title = {Two beta-alanyl-CoA:ammonia lyases in Clostridium propionicum / Herrmann , G. ; Selmer, T. ; Jessen, HJ. ; Gokarn, RR. ; Selifonova, O. ; Gort , SJ. ; , Buckel, W.}, series = {The FEBS Journal. 272 (2005), H. 3}, journal = {The FEBS Journal. 272 (2005), H. 3}, isbn = {1742-464X}, pages = {813 -- 821}, year = {2005}, language = {en} } @article{SelmerHetzelBrocketal.2003, author = {Selmer, Thorsten and Hetzel, Marc and Brock, Matthias and Pierik, Antonio J.}, title = {Acryloyl-CoA reductase from Clostridium propionicum. An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein / Hetzel, Marc ; Brock, Matthias ; Selmer, Thorsten, Pierik, Antonio J. ; Golding, Bernard T. ; Buckel, Wolfgang}, series = {European Journal of Biochemistry. 270 (2003), H. 5}, journal = {European Journal of Biochemistry. 270 (2003), H. 5}, isbn = {0014-2956}, pages = {902 -- 910}, year = {2003}, language = {en} } @article{SelmerJennemannBaueretal.1999, author = {Selmer, Thorsten and Jennemann, Richard and Bauer, Bernhard L. and Bertalanffy, Helmut}, title = {Novel glycoinositolphosphosphingolipids, basidiolipids, from Agaricus / Jennemann, Richard ; Bauer, Bernhard, L. ; Bertalanffy, Helmut ; Geyer, Rudolf ; Gschwind, Ruth, M. ; Selmer, Thorsten ; Wiegandt, Herbert}, series = {European Journal of Biochemistry. 259 (1999), H. 1-2}, journal = {European Journal of Biochemistry. 259 (1999), H. 1-2}, isbn = {0014-2956}, pages = {331 -- 338}, year = {1999}, language = {en} } @article{SelmerJennemannBaueretal.1999, author = {Selmer, Thorsten and Jennemann, Richard and Bauer, Bernhard L. and Bertalanffy, Helmut}, title = {Basidiolipids from Agaricus are novel immune adjuvants / Jennemann, R. ; Bauer, BL. ; Bertalanffy, H. ; Selmer, T. ; Wiegandt, H.}, series = {Immunobiology. 200 (1999), H. 2}, journal = {Immunobiology. 200 (1999), H. 2}, isbn = {0171-2985}, pages = {277 -- 289}, year = {1999}, language = {en} } @article{SelmerKahntGoubeaudetal.2000, author = {Selmer, Thorsten and Kahnt, J{\"o}rg and Goubeaud, Marcel and Shima, Seigo}, title = {The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase / Selmer, Thorsten ; Kahnt, J{\"o}rg ; Goubeaud, Marcel ; Shima, Seigo ; Grabarse, Wolfgang ; Ermler, Ulrich ; Thauer, Rudolf K.}, series = {Journal of Biological Chemistry. 275 (2000), H. 6}, journal = {Journal of Biological Chemistry. 275 (2000), H. 6}, isbn = {1083-351X}, pages = {3775 -- 3760}, year = {2000}, language = {en} } @article{SelmerKimDarleyetal.2006, author = {Selmer, Thorsten and Kim, Jihoe and Darley, Daniel and Buckel, Wolfgang}, title = {Characterization of (R)-2-hydroxyisocaproate dehydrogenase and a family III coenzyme A transferase involved in reduction of L-leucine to isocaproate by Clostridium difficile / Kim, J. ; Darley, D. ; Selmer, T. ; Buckel, W.}, series = {Applied and Environmental Microbiology. 72 (2006), H. 9}, journal = {Applied and Environmental Microbiology. 72 (2006), H. 9}, isbn = {0099-2240}, pages = {6062 -- 6069}, year = {2006}, language = {en} } @article{SelmerLukatelaKraussetal.1998, author = {Selmer, Thorsten and Lukatela, G. and Krauss, N. and Theis, K.}, title = {Crystal structure of human arylsulfatase A: the aldehyde function and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis / Lukatela, G. ; Krauss, N. ; Theis, K. ; Selmer, T. ; Gieselmann, V. ; Figura, K. von ; Saenger,}, series = {Biochemistry. 37 (1998), H. 11}, journal = {Biochemistry. 37 (1998), H. 11}, pages = {3654 -- 3664}, year = {1998}, language = {en} } @article{SelmerMiechDierksetal.1998, author = {Selmer, Thorsten and Miech, Claudia and Dierks, Thomas and Figura, Kurt von}, title = {Arylsulfatase from Klebsiella pneumoniae Carries a Formylglycine Generated from a Serine / Miech, Claudia ; Dierks, Thomas ; Selmer, Thorsten ; Figura, Kurt von ; Schmidt, Bernd}, series = {Journal of Biological Chemistry. 273 (1998), H. 9}, journal = {Journal of Biological Chemistry. 273 (1998), H. 9}, isbn = {1083-351X}, pages = {4835 -- 4837}, year = {1998}, language = {en} } @article{SelmerNetzPohletal.2002, author = {Selmer, Thorsten and Netz, Daili Jacqueline Aguilar and Pohl, Regula and Beck-Sickinger, Annette G.}, title = {Biochemical characterisation and genetic analysis of aureocin A53, a new, atypical bacteriocin from Staphylococcus aureus / Netz, Daili Jacqueline Aguilar ; Pohl, Regula ; Beck-Sickinger, Annette G. ; Selmer, Thorsten ; Pierik, Antonio J. ; Carmo de Frei}, series = {Journal of Molecular Biology. 319 (2002), H. 3}, journal = {Journal of Molecular Biology. 319 (2002), H. 3}, isbn = {0022-2836}, pages = {745 -- 756}, year = {2002}, language = {en} } @article{SelmerPierikHeider2005, author = {Selmer, Thorsten and Pierik, Antonio J. and Heider, Johann}, title = {New glycyl radical enzymes catalysing key metabolic steps in anaerobic bacteria}, series = {Biological Chemistry. 386 (2005), H. 10}, journal = {Biological Chemistry. 386 (2005), H. 10}, isbn = {1431-6730}, pages = {981 -- 988}, year = {2005}, language = {en} } @article{SelmerPinkenburg2008, author = {Selmer, Thorsten and Pinkenburg, Olaf}, title = {Method of cloning at least one nucleic acid molecule of interest using type IIS restriction endonucleases, and corresponding cloning vectors, kits and system using type IIS restriction endonucleases / Selmer, Thorsten ; Pinkenburg, Olaf}, year = {2008}, language = {en} } @article{SelmerRecksiekDierksetal.1998, author = {Selmer, Thorsten and Recksiek, Michael and Dierks, Thomas and Schmidt, Bernhard}, title = {Sulfatases, Trapping of the Sulfated Enzyme Intermediate by Substituting the Active Site Formylglycine / Recksiek, Michael ; Selmer, Thorsten ; Dierks, Thomas ; Schmidt, Bernhard ; Figura, Kurt von}, series = {Journal of Biological Chemistry. 273 (1998), H. 11}, journal = {Journal of Biological Chemistry. 273 (1998), H. 11}, isbn = {1083-351X}, pages = {6096 -- 6103}, year = {1998}, language = {en} } @article{SelmerSchmidtIngendohetal.1995, author = {Selmer, Thorsten and Schmidt, Bernhard and Ingendoh, Arnd and Figura, Kurt von}, title = {A novel amino acid modification in sulfatases that is defective in multiple sulfatase deficiency / Schmidt, Bernhard ; Selmer, Thorsten ; Ingendoh, Arnd ; Figurat, Kurt von}, series = {Cell. 82 (1995), H. 2}, journal = {Cell. 82 (1995), H. 2}, isbn = {0092-8674}, pages = {271 -- 278}, year = {1995}, language = {en} } @article{SelmerScottNaeseretal.2004, author = {Selmer, Thorsten and Scott, Richard and N{\"a}ser, Ulrike and Friedrich, Peter}, title = {Stereochemistry of hydrogen removal from the 'unactivated' C-3 position of 4-hydroxybutyryl-CoA catalysed by 4-hydroxybutyryl-CoA dehydratase / Scott, R. ; N{\"a}ser, U. ; Friedrich, P. ; Selmer, T. ; Buckel, W. ; Golding, BT.}, series = {Chemical Communications : ChemCom (2004)}, journal = {Chemical Communications : ChemCom (2004)}, isbn = {1364-548X}, pages = {1210 -- 1211}, year = {2004}, language = {en} } @article{SelmerSommerladeIngendohetal.1994, author = {Selmer, Thorsten and Sommerlade, Hans-J{\"o}rg and Ingendoh, Arnd and Gieselmann, Volkmar}, title = {Glycosylation and phosphorylation of arylsulfatase A / Sommerlade, Hans-J{\"o}rg. ; Selmer, Thomas. ; Ingendoh, Arnd ; Gieselmann, Volkmar ; Figura, Kurt von ; Neifer, Klaus ; Schmidt, Bernhard}, series = {Journal of Biological Chemistry. 269 (1994), H. 33}, journal = {Journal of Biological Chemistry. 269 (1994), H. 33}, isbn = {1083-351X}, pages = {20977 -- 20981}, year = {1994}, language = {en} } @article{SelmerThamerCirpusetal.2003, author = {Selmer, Thorsten and Thamer, Wiebke and Cirpus, Irina and Hans, Marcus}, title = {A two [4Fe-4S]-cluster-containing ferredoxin as an alternative electron donor for 2-hydroxyglutaryl-CoA dehydratase from Acidaminococcus fermentans / Thamer, Wiebke ; Cirpus, Irina ; Hans, Marcus ; Pierik, Antonio, J. ; Selmer, Thorsten ; Bill, Eckhard ;}, series = {Archives of Microbiology. 179 (2003), H. 3}, journal = {Archives of Microbiology. 179 (2003), H. 3}, isbn = {1432-072X}, pages = {197 -- 204}, year = {2003}, language = {en} } @article{SelmerWillanzheimerHetzel2002, author = {Selmer, Thorsten and Willanzheimer, Angela and Hetzel, Marc}, title = {Propionate CoA-transferase from Clostridium propionicum. Cloning of the gene and identification of glutamate 324 at the active site}, series = {European Journal of Biochemistry. 269 (2002), H. 1}, journal = {European Journal of Biochemistry. 269 (2002), H. 1}, isbn = {0014-2956}, pages = {372 -- 380}, year = {2002}, language = {en} } @article{SelmerYuBlaseretal.2006, author = {Selmer, Thorsten and Yu, Lihua and Blaser, Martin and Andrei, Paula I.}, title = {4-Hydroxyphenylacetate decarboxylases: properties of a novel subclass of glycyl radical enzyme systems / Yu, L. ; Blaser, M. ; Andrei, PI. ; Pierik, AJ. Selmer, T.}, series = {Biochemistry. 31 (2006), H. 45}, journal = {Biochemistry. 31 (2006), H. 45}, pages = {9584 -- 9592}, year = {2006}, language = {en} } @article{WernerGroebelKrumbeetal.2012, author = {Werner, Frederik and Groebel, Simone and Krumbe, Christoph and Wagner, Torsten and Selmer, Thorsten and Yoshinobu, Tatsuo and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Nutrient concentration-sensitive microorganism-based biosensor}, series = {Physica Status Solidi (a)}, volume = {209}, journal = {Physica Status Solidi (a)}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1862-6319}, doi = {10.1002/pssa.201100801}, pages = {900 -- 904}, year = {2012}, language = {en} } @article{WernerKrumbeSchumacheretal.2011, author = {Werner, Frederik and Krumbe, Christoph and Schumacher, Katharina and Groebel, Simone and Spelthahn, Heiko and Stellberg, Michael and Wagner, Torsten and Yoshinobu, Tatsuo and Selmer, Thorsten and Keusgen, Michael and Baumann, Marcus and Sch{\"o}ning, Michael Josef}, title = {Determination of the extracellular acidification of Escherichia coli by a light-addressable potentiometric sensor}, series = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, journal = {Physica status solidi (a) : applications and material science. 208 (2011), H. 6}, publisher = {Wiley}, address = {Weinheim}, isbn = {1862-6319}, pages = {1340 -- 1344}, year = {2011}, language = {en} }