@article{WendlandtKochBritzetal.2023, author = {Wendlandt, Tim and Koch, Claudia and Britz, Beate and Liedek, Anke and Schmidt, Nora and Werner, Stefan and Gleba, Yuri and Vahidpour, Farnoosh and Welden, Melanie and Poghossian, Arshak and Sch{\"o}ning, Michael Josef}, title = {Facile Purification and Use of Tobamoviral Nanocarriers for Antibody-Mediated Display of a Two-Enzyme System}, series = {Viruses}, volume = {9}, journal = {Viruses}, number = {15}, publisher = {MDPI}, address = {Basel}, issn = {1999-4915}, doi = {doi.org/10.3390/v15091951}, pages = {Artikel 1951}, year = {2023}, abstract = {Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.}, language = {en} } @article{KowalewskiBragardHueningetal.2023, author = {Kowalewski, Paul and Bragard, Michael and H{\"u}ning, Felix and De Doncker, Rik W.}, title = {An inexpensive Wiegand-sensor-based rotary encoder without rotating magnets for use in electrical drives}, series = {IEEE Transactions on Instrumentation and Measurement}, journal = {IEEE Transactions on Instrumentation and Measurement}, publisher = {IEEE}, issn = {0018-9456 (Print)}, doi = {10.1109/TIM.2023.3326166}, pages = {10 Seiten}, year = {2023}, abstract = {This paper introduces an inexpensive Wiegand-sensor-based rotary encoder that avoids rotating magnets and is suitable for electrical-drive applications. So far, Wiegand-sensor-based encoders usually include a magnetic pole wheel with rotating permanent magnets. These encoders combine the disadvantages of an increased magnet demand and a limited maximal speed due to the centripetal force acting on the rotating magnets. The proposed approach reduces the total demand of permanent magnets drastically. Moreover, the rotating part is manufacturable from a single piece of steel, which makes it very robust and cheap. This work presents the theoretical operating principle of the proposed approach and validates its benefits on a hardware prototype. The presented proof-of-concept prototype achieves a mechanical resolution of 4.5 ° by using only 4 permanent magnets, 2Wiegand sensors and a rotating steel gear wheel with 20 teeth.}, language = {en} } @article{HerssensCowburnAlbrachtetal.2022, author = {Herssens, Nolan and Cowburn, James and Albracht, Kirsten and Braunstein, Bjoern and Cazzola, Dario and Colyer, Steffi and Minetti, Alberto E. and Pavei, Gaspare and Rittweger, J{\"o}rn and Weber, Tobias and Green, David A.}, title = {Movement in low gravity environments (MoLo) programme - the MoLo-L.O.O.P. study protocol}, series = {PLOS ONE / Public Library of Science}, volume = {17}, journal = {PLOS ONE / Public Library of Science}, number = {11}, editor = {Cattaneo, Luigi}, publisher = {Plos}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0278051}, pages = {e0278051}, year = {2022}, abstract = {Exposure to prolonged periods in microgravity is associated with deconditioning of the musculoskeletal system due to chronic changes in mechanical stimulation. Given astronauts will operate on the Lunar surface for extended periods of time, it is critical to quantify both external (e.g., ground reaction forces) and internal (e.g., joint reaction forces) loads of relevant movements performed during Lunar missions. Such knowledge is key to predict musculoskeletal deconditioning and determine appropriate exercise countermeasures associated with extended exposure to hypogravity.}, language = {en} } @article{CollPeralesSchulteTiggesRondinoneetal.2022, author = {Coll-Perales, Baldomero and Schulte-Tigges, Joschua and Rondinone, Michele and Gozalvez, Javier and Reke, Michael and Matheis, Dominik and Walter, Thomas}, title = {Prototyping and evaluation of infrastructure-assisted transition of control for cooperative automated vehicles}, series = {IEEE Transactions on Intelligent Transportation Systems}, volume = {23}, journal = {IEEE Transactions on Intelligent Transportation Systems}, number = {7}, publisher = {IEEE}, issn = {1524-9050 (Print)}, doi = {10.1109/TITS.2021.3061085}, pages = {6720 -- 6736}, year = {2022}, abstract = {Automated driving is now possible in diverse road and traffic conditions. However, there are still situations that automated vehicles cannot handle safely and efficiently. In this case, a Transition of Control (ToC) is necessary so that the driver takes control of the driving. Executing a ToC requires the driver to get full situation awareness of the driving environment. If the driver fails to get back the control in a limited time, a Minimum Risk Maneuver (MRM) is executed to bring the vehicle into a safe state (e.g., decelerating to full stop). The execution of ToCs requires some time and can cause traffic disruption and safety risks that increase if several vehicles execute ToCs/MRMs at similar times and in the same area. This study proposes to use novel C-ITS traffic management measures where the infrastructure exploits V2X communications to assist Connected and Automated Vehicles (CAVs) in the execution of ToCs. The infrastructure can suggest a spatial distribution of ToCs, and inform vehicles of the locations where they could execute a safe stop in case of MRM. This paper reports the first field operational tests that validate the feasibility and quantify the benefits of the proposed infrastructure-assisted ToC and MRM management. The paper also presents the CAV and roadside infrastructure prototypes implemented and used in the trials. The conducted field trials demonstrate that infrastructure-assisted traffic management solutions can reduce safety risks and traffic disruptions.}, language = {en} } @article{MoraisSumanSchoeningetal.2023, author = {Morais, Paulo V. and Suman, Pedro H. and Sch{\"o}ning, Michael Josef and Siqueira Junior, Jos{\´e} R. and Orlandi, Marcelo O.}, title = {Layer-by-layer film based on Sn₃O₄ nanobelts as sensing units to detect heavy metals using a capacitive field-effect sensor platform}, series = {Chemosensors}, volume = {11}, journal = {Chemosensors}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors11080436}, pages = {Artikel 436}, year = {2023}, abstract = {Lead and nickel, as heavy metals, are still used in industrial processes, and are classified as "environmental health hazards" due to their toxicity and polluting potential. The detection of heavy metals can prevent environmental pollution at toxic levels that are critical to human health. In this sense, the electrolyte-insulator-semiconductor (EIS) field-effect sensor is an attractive sensing platform concerning the fabrication of reusable and robust sensors to detect such substances. This study is aimed to fabricate a sensing unit on an EIS device based on Sn₃O₄ nanobelts embedded in a polyelectrolyte matrix of polyvinylpyrrolidone (PVP) and polyacrylic acid (PAA) using the layer-by-layer (LbL) technique. The EIS-Sn₃O₄ sensor exhibited enhanced electrochemical performance for detecting Pb²⁺ and Ni²⁺ ions, revealing a higher affinity for Pb²⁺ ions, with sensitivities of ca. 25.8 mV/decade and 2.4 mV/decade, respectively. Such results indicate that Sn₃O₄ nanobelts can contemplate a feasible proof-of-concept capacitive field-effect sensor for heavy metal detection, envisaging other future studies focusing on environmental monitoring.}, language = {en} } @article{ThomaThomessenGardietal.2023, author = {Thoma, Andreas and Thomessen, Karolin and Gardi, Alessandro and Fisher, A. and Braun, Carsten}, title = {Prioritising paths: An improved cost function for local path planning for UAV in medical applications}, series = {The Aeronautical Journal}, journal = {The Aeronautical Journal}, number = {First View}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {0001-9240 (Print)}, doi = {10.1017/aer.2023.68}, pages = {1 -- 18}, year = {2023}, abstract = {Even the shortest flight through unknown, cluttered environments requires reliable local path planning algorithms to avoid unforeseen obstacles. The algorithm must evaluate alternative flight paths and identify the best path if an obstacle blocks its way. Commonly, weighted sums are used here. This work shows that weighted Chebyshev distances and factorial achievement scalarising functions are suitable alternatives to weighted sums if combined with the 3DVFH* local path planning algorithm. Both methods considerably reduce the failure probability of simulated flights in various environments. The standard 3DVFH* uses a weighted sum and has a failure probability of 50\% in the test environments. A factorial achievement scalarising function, which minimises the worst combination of two out of four objective functions, reaches a failure probability of 26\%; A weighted Chebyshev distance, which optimises the worst objective, has a failure probability of 30\%. These results show promise for further enhancements and to support broader applicability.}, language = {en} } @article{SchulzeFeyerlPischinger2023, author = {Schulze, Sven and Feyerl, G{\"u}nter and Pischinger, Stefan}, title = {Advanced ECMS for hybrid electric heavy-duty trucks with predictive battery discharge and adaptive operating strategy under real driving conditions}, series = {Energies}, volume = {16}, journal = {Energies}, number = {13}, publisher = {MDPI}, address = {Basel}, issn = {1996-1073}, doi = {10.3390/en16135171}, pages = {29 Seiten, Art. Nr.: 5171}, year = {2023}, abstract = {To fulfil the CO2 emission reduction targets of the European Union (EU), heavy-duty (HD) trucks need to operate 15\% more efficiently by 2025 and 30\% by 2030. Their electrification is necessary as conventional HD trucks are already optimized for the long-haul application. The resulting hybrid electric vehicle (HEV) truck gains most of the fuel saving potential by the recuperation of potential energy and its consecutive utilization. The key to utilizing the full potential of HEV-HD trucks is to maximize the amount of recuperated energy and ensure its intelligent usage while keeping the operating point of the internal combustion engine as efficient as possible. To achieve this goal, an intelligent energy management strategy (EMS) based on ECMS is developed for a parallel HEV-HD truck which uses predictive discharge of the battery and adaptive operating strategy regarding the height profile and the vehicle mass. The presented EMS can reproduce the global optimal operating strategy over long phases and lead to a fuel saving potential of up to 2\% compared with a heuristic strategy. Furthermore, the fuel saving potential is correlated with the investigated boundary conditions to deepen the understanding of the impact of intelligent EMS for HEV-HD trucks.}, language = {en} } @article{WaldvogelFreylerHelmetal.2023, author = {Waldvogel, Janice and Freyler, Kathrin and Helm, Michael and Monti, Elena and St{\"a}udle, Benjamin and Gollhofer, Albert and Narici, Marco V. and Ritzmann, Ramona and Albracht, Kirsten}, title = {Changes in gravity affect neuromuscular control, biomechanics, and muscle-tendon mechanics in energy storage and dissipation tasks}, series = {Journal of Applied Physiology}, volume = {134}, journal = {Journal of Applied Physiology}, number = {1}, publisher = {American Physiological Society}, address = {Bethesda, Md.}, issn = {1522-1601 (Onlineausgabe)}, doi = {10.1152/japplphysiol.00279.2022}, pages = {190 -- 202}, year = {2023}, abstract = {This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.}, language = {en} } @article{VoegeleJosyabhatlaBalletal.2023, author = {V{\"o}gele, Stefan and Josyabhatla, Vishnu Teja and Ball, Christopher and Rhoden, Imke and Grajewski, Matthias and R{\"u}bbelke, Dirk and Kuckshinrichs, Wilhelm}, title = {Robust assessment of energy scenarios from stakeholders' perspectives}, series = {Energy}, journal = {Energy}, number = {In Press, Article 128326}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1873-6785 (Online)}, doi = {10.1016/j.energy.2023.128326}, year = {2023}, abstract = {Using scenarios is vital in identifying and specifying measures for successfully transforming the energy system. Such transformations can be particularly challenging and require the support of a broader set of stakeholders. Otherwise, there will be opposition in the form of reluctance to adopt the necessary technologies. Usually, processes for considering stakeholders' perspectives are very time-consuming and costly. In particular, there are uncertainties about how to deal with modifications in the scenarios. In principle, new consulting processes will be required. In our study, we show how multi-criteria decision analysis can be used to analyze stakeholders' attitudes toward transition paths. Since stakeholders differ regarding their preferences and time horizons, we employ a multi-criteria decision analysis approach to identify which stakeholders will support or oppose a transition path. We provide a flexible template for analyzing stakeholder preferences toward transition paths. This flexibility comes from the fact that our multi-criteria decision aid-based approach does not involve intensive empirical work with stakeholders. Instead, it involves subjecting assumptions to robustness analysis, which can help identify options to influence stakeholders' attitudes toward transitions.}, language = {en} } @article{RhodenBallGrajewskietal.2023, author = {Rhoden, Imke and Ball, Christopher Stephen and Grajewski, Matthias and Kuckshinrich, Wilhelm}, title = {Reverse engineering of stakeholder preferences - A multi-criteria assessment of the German passenger car sector}, series = {Renewable and Sustainable Energy Reviews}, volume = {181}, journal = {Renewable and Sustainable Energy Reviews}, number = {July 2023}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1364-0321}, doi = {10.1016/j.rser.2023.113352}, pages = {Article number: 113352}, year = {2023}, abstract = {Germany is a frontrunner in setting frameworks for the transition to a low-carbon system. The mobility sector plays a significant role in this shift, affecting different people and groups on multiple levels. Without acceptance from these stakeholders, emission targets are out of reach. This research analyzes how the heterogeneous preferences of various stakeholders align with the transformation of the mobility sector, looking at the extent to which the German transformation paths are supported and where stakeholders are located. Under the research objective of comparing stakeholders' preferences to identify which car segments require additional support for a successful climate transition, a status quo of stakeholders and car performance criteria is the foundation for the analysis. Stakeholders' hidden preferences hinder the derivation of criteria weightings from stakeholders; therefore, a ranking from observed preferences is used. This study's inverse multi-criteria decision analysis means that weightings can be predicted and used together with a recalibrated performance matrix to explore future preferences toward car segments. Results show that stakeholders prefer medium-sized cars, with the trend pointing towards the increased potential for alternative propulsion technologies and electrified vehicles. These insights can guide the improved targeting of policy supporting the energy and mobility transformation. Additionally, the method proposed in this work can fully handle subjective approaches while incorporating a priori information. A software implementation of the proposed method completes this work and is made publicly available.}, language = {en} } @article{HeieisBoeckerD'Angeloetal.2023, author = {Heieis, Jule and B{\"o}cker, Jonas and D'Angelo, Olfa and Mittag, Uwe and Albracht, Kirsten and Sch{\"o}nau, Eckhard and Meyer, Andreas and Voigtmann, Thomas and Rittweger, J{\"o}rn}, title = {Curvature of gastrocnemius muscle fascicles as function of muscle-tendon complex length and contraction in humans}, series = {Physiological Reports}, volume = {11}, journal = {Physiological Reports}, number = {11}, publisher = {Wiley}, issn = {2051-817X}, doi = {10.14814/phy2.15739}, pages = {e15739, Seite 1-11}, year = {2023}, abstract = {It has been shown that muscle fascicle curvature increases with increasing contraction level and decreasing muscle-tendon complex length. The analyses were done with limited examination windows concerning contraction level, muscle-tendon complex length, and/or intramuscular position of ultrasound imaging. With this study we aimed to investigate the correlation between fascicle arching and contraction, muscle-tendon complex length and their associated architectural parameters in gastrocnemius muscles to develop hypotheses concerning the fundamental mechanism of fascicle curving. Twelve participants were tested in five different positions (90°/105°*, 90°/90°*, 135°/90°*, 170°/90°*, and 170°/75°*; *knee/ankle angle). They performed isometric contractions at four different contraction levels (5\%, 25\%, 50\%, and 75\% of maximum voluntary contraction) in each position. Panoramic ultrasound images of gastrocnemius muscles were collected at rest and during constant contraction. Aponeuroses and fascicles were tracked in all ultrasound images and the parameters fascicle curvature, muscle-tendon complex strain, contraction level, pennation angle, fascicle length, fascicle strain, intramuscular position, sex and age group were analyzed by linear mixed effect models. Mean fascicle curvature of the medial gastrocnemius increased with contraction level (+5 m-1 from 0\% to 100\%; p = 0.006). Muscle-tendon complex length had no significant impact on mean fascicle curvature. Mean pennation angle (2.2 m-1 per 10°; p < 0.001), inverse mean fascicle length (20 m-1 per cm-1; p = 0.003), and mean fascicle strain (-0.07 m-1 per +10\%; p = 0.004) correlated with mean fascicle curvature. Evidence has also been found for intermuscular, intramuscular, and sex-specific intramuscular differences of fascicle curving. Pennation angle and the inverse fascicle length show the highest predictive capacities for fascicle curving. Due to the strong correlations between pennation angle and fascicle curvature and the intramuscular pattern of curving we suggest for future studies to examine correlations between fascicle curvature and intramuscular fluid pressure.}, language = {en} } @article{AchtsnichtNeuendorfFassbenderetal.2019, author = {Achtsnicht, Stefan and Neuendorf, Christian and Faßbender, Tobias and N{\"o}lke, Greta and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim and Schr{\"o}per, Florian}, title = {Sensitive and rapid detection of cholera toxin subunit B using magnetic frequency mixing detection}, series = {Plos One}, volume = {14}, journal = {Plos One}, number = {7}, publisher = {Plos}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0219356}, pages = {e0219356}, year = {2019}, abstract = {Cholera is a life-threatening disease caused by the cholera toxin (CT) as produced by some Vibrio cholerae serogroups. In this research we present a method which directly detects the toxin's B subunit (CTB) in drinking water. For this purpose we performed a magnetic sandwich immunoassay inside a 3D immunofiltration column. We used two different commercially available antibodies to capture CTB and for binding to superparamagnetic beads. ELISA experiments were performed to select the antibody combination. The beads act as labels for the magnetic frequency mixing detection technique. We show that the limit of detection depends on the type of magnetic beads. A nonlinear Hill curve was fitted to the calibration measurements by means of a custom-written python software. We achieved a sensitive and rapid detection of CTB within a broad concentration range from 0.2 ng/ml to more than 700 ng/ml.}, language = {en} } @article{TrappLammersEngudaretal.2023, author = {Trapp, Svenja and Lammers, Tom and Engudar, Gokce and Hoehr, Cornelia and Denkova, Antonia G. and Paulßen, Elisabeth and de Kruijff, Robin M.}, title = {Membrane-based microfluidic solvent extraction of Ga-68 from aqueous Zn solutions: towards an automated cyclotron production loop}, series = {EJNMMI Radiopharmacy and Chemistry}, volume = {2023}, journal = {EJNMMI Radiopharmacy and Chemistry}, number = {8, Article number: 9}, publisher = {Springer Nature}, issn = {2365-421X}, doi = {10.1186/s41181-023-00195-2}, pages = {1 -- 14}, year = {2023}, language = {en} } @article{CheenakulaGriebelMontagetal.2023, author = {Cheenakula, Dheeraja and Griebel, Kai and Montag, David and Gr{\"o}mping, Markus}, title = {Concept development of a mainstream deammonification and comparison with conventional process in terms of energy, performance and economical construction perspectives}, series = {Frontiers in Microbiology}, volume = {14}, journal = {Frontiers in Microbiology}, number = {11155235}, editor = {Huang, Xiaowu}, publisher = {Frontiers}, issn = {1664-302X}, doi = {10.3389/fmicb.2023.1155235}, pages = {1 -- 15}, year = {2023}, abstract = {Deammonification for nitrogen removal in municipal wastewater in temperate and cold climate zones is currently limited to the side stream of municipal wastewater treatment plants (MWWTP). This study developed a conceptual model of a mainstream deammonification plant, designed for 30,000 P.E., considering possible solutions corresponding to the challenging mainstream conditions in Germany. In addition, the energy-saving potential, nitrogen elimination performance and construction-related costs of mainstream deammonification were compared to a conventional plant model, having a single-stage activated sludge process with upstream denitrification. The results revealed that an additional treatment step by combining chemical precipitation and ultra-fine screening is advantageous prior the mainstream deammonification. Hereby chemical oxygen demand (COD) can be reduced by 80\% so that the COD:N ratio can be reduced from 12 to 2.5. Laboratory experiments testing mainstream conditions of temperature (8-20°C), pH (6-9) and COD:N ratio (1-6) showed an achievable volumetric nitrogen removal rate (VNRR) of at least 50 gN/(m3∙d) for various deammonifying sludges from side stream deammonification systems in the state of North Rhine-Westphalia, Germany, where m3 denotes reactor volume. Assuming a retained Norganic content of 0.0035 kgNorg./(P.E.∙d) from the daily loads of N at carbon removal stage and a VNRR of 50 gN/(m3∙d) under mainstream conditions, a resident-specific reactor volume of 0.115 m3/(P.E.) is required for mainstream deammonification. This is in the same order of magnitude as the conventional activated sludge process, i.e., 0.173 m3/(P.E.) for an MWWTP of size class of 4. The conventional plant model yielded a total specific electricity demand of 35 kWh/(P.E.∙a) for the operation of the whole MWWTP and an energy recovery potential of 15.8 kWh/(P.E.∙a) through anaerobic digestion. In contrast, the developed mainstream deammonification model plant would require only a 21.5 kWh/(P.E.∙a) energy demand and result in 24 kWh/(P.E.∙a) energy recovery potential, enabling the mainstream deammonification model plant to be self-sufficient. The retrofitting costs for the implementation of mainstream deammonification in existing conventional MWWTPs are nearly negligible as the existing units like activated sludge reactors, aerators and monitoring technology are reusable. However, the mainstream deammonification must meet the performance requirement of VNRR of about 50 gN/(m3∙d) in this case.}, language = {en} } @article{KemptFreyerNagel2022, author = {Kempt, Hendrik and Freyer, Nils and Nagel, Saskia K.}, title = {Justice and the normative standards of explainability in healthcare}, series = {Philosophy \& Technology}, volume = {35}, journal = {Philosophy \& Technology}, number = {Article number: 100}, publisher = {Springer Nature}, address = {Berlin}, doi = {10.1007/s13347-022-00598-0}, pages = {1 -- 19}, year = {2022}, abstract = {Providing healthcare services frequently involves cognitively demanding tasks, including diagnoses and analyses as well as complex decisions about treatments and therapy. From a global perspective, ethically significant inequalities exist between regions where the expert knowledge required for these tasks is scarce or abundant. One possible strategy to diminish such inequalities and increase healthcare opportunities in expert-scarce settings is to provide healthcare solutions involving digital technologies that do not necessarily require the presence of a human expert, e.g., in the form of artificial intelligent decision-support systems (AI-DSS). Such algorithmic decision-making, however, is mostly developed in resource- and expert-abundant settings to support healthcare experts in their work. As a practical consequence, the normative standards and requirements for such algorithmic decision-making in healthcare require the technology to be at least as explainable as the decisions made by the experts themselves. The goal of providing healthcare in settings where resources and expertise are scarce might come with a normative pull to lower the normative standards of using digital technologies in order to provide at least some healthcare in the first place. We scrutinize this tendency to lower standards in particular settings from a normative perspective, distinguish between different types of absolute and relative, local and global standards of explainability, and conclude by defending an ambitious and practicable standard of local relative explainability.}, language = {en} } @article{KuchlerGuenthnerRibeiroetal.2023, author = {Kuchler, Timon and G{\"u}nthner, Roman and Ribeiro, Andrea and Hausinger, Renate and Streese, Lukas and W{\"o}hnl, Anna and Kesseler, Veronika and Negele, Johanna and Assali, Tarek and Carbajo-Lozoya, Javier and Lech, Maciej and Adorjan, Kristina and Stubbe, Hans Christian and Hanssen, Henner and Kotliar, Konstantin and Haller, Berhard and Heemann, Uwe and Schmaderer, Christoph}, title = {Persistent endothelial dysfunction in post-COVID-19 syndrome and its associations with symptom severity and chronic inflammation}, volume = {26}, publisher = {Springer Nature}, address = {Dordrecht}, doi = {10.1007/s10456-023-09885-6}, pages = {547 -- 563}, year = {2023}, abstract = {Background Post-COVID-19 syndrome (PCS) is a lingering disease with ongoing symptoms such as fatigue and cognitive impairment resulting in a high impact on the daily life of patients. Understanding the pathophysiology of PCS is a public health priority, as it still poses a diagnostic and treatment challenge for physicians. Methods In this prospective observational cohort study, we analyzed the retinal microcirculation using Retinal Vessel Analysis (RVA) in a cohort of patients with PCS and compared it to an age- and gender-matched healthy cohort (n = 41, matched out of n = 204). Measurements and main results PCS patients exhibit persistent endothelial dysfunction (ED), as indicated by significantly lower venular flicker-induced dilation (vFID; 3.42\% ± 1.77\% vs. 4.64\% ± 2.59\%; p = 0.02), narrower central retinal artery equivalent (CRAE; 178.1 [167.5-190.2] vs. 189.1 [179.4-197.2], p = 0.01) and lower arteriolar-venular ratio (AVR; (0.84 [0.8-0.9] vs. 0.88 [0.8-0.9], p = 0.007). When combining AVR and vFID, predicted scores reached good ability to discriminate groups (area under the curve: 0.75). Higher PCS severity scores correlated with lower AVR (R = - 0.37 p = 0.017). The association of microvascular changes with PCS severity were amplified in PCS patients exhibiting higher levels of inflammatory parameters. Conclusion Our results demonstrate that prolonged endothelial dysfunction is a hallmark of PCS, and impairments of the microcirculation seem to explain ongoing symptoms in patients. As potential therapies for PCS emerge, RVA parameters may become relevant as clinical biomarkers for diagnosis and therapy management.}, language = {en} } @article{AchtsnichtPourshahidiOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Pourshahidi, Ali Mohammad and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Multiplex detection of different magnetic beads using frequency scanning in magnetic frequency mixing technique}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19112599}, pages = {13 Seiten}, year = {2019}, abstract = {In modern bioanalytical methods, it is often desired to detect several targets in one sample within one measurement. Immunological methods including those that use superparamagnetic beads are an important group of techniques for these applications. The goal of this work is to investigate the feasibility of simultaneously detecting different superparamagnetic beads acting as markers using the magnetic frequency mixing technique. The frequency of the magnetic excitation field is scanned while the lower driving frequency is kept constant. Due to the particles' nonlinear magnetization, mixing frequencies are generated. To record their amplitude and phase information, a direct digitization of the pickup-coil's signal with subsequent Fast Fourier Transformation is performed. By synchronizing both magnetic beads using frequency scanning in magnetic frequency mixing technique magnetic fields, a stable phase information is gained. In this research, it is shown that the amplitude of the dominant mixing component is proportional to the amount of superparamagnetic beads inside a sample. Additionally, it is shown that the phase does not show this behaviour. Excitation frequency scans of different bead types were performed, showing different phases, without correlation to their diverse amplitudes. Two commercially available beads were selected and a determination of their amount in a mixture is performed as a demonstration for multiplex measurements.}, language = {en} } @article{AchtsnichtToedterNiehuesetal.2019, author = {Achtsnicht, Stefan and T{\"o}dter, Julia and Niehues, Julia and Tel{\"o}ken, Matthias and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim and Schr{\"o}per, Florian}, title = {3D printed modular immunofiltration columns for frequency mixing-based multiplex magnetic immunodetection}, series = {Sensors}, volume = {19}, journal = {Sensors}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s19010148}, pages = {15 Seiten}, year = {2019}, abstract = {For performing point-of-care molecular diagnostics, magnetic immunoassays constitute a promising alternative to established enzyme-linked immunosorbent assays (ELISA) because they are fast, robust and sensitive. Simultaneous detection of multiple biomolecular targets from one body fluid sample is desired. The aim of this work is to show that multiplex magnetic immunodetection based on magnetic frequency mixing by means of modular immunofiltration columns prepared for different targets is feasible. By calculations of the magnetic response signal, the required spacing between the modules was determined. Immunofiltration columns were manufactured by 3D printing and antibody immobilization was performed in a batch approach. It was shown experimentally that two different target molecules in a sample solution could be individually detected in a single assaying step with magnetic measurements of the corresponding immobilization filters. The arrangement order of the filters and of a negative control did not influence the results. Thus, a simple and reliable approach to multi-target magnetic immunodetection was demonstrated.}, language = {en} } @article{AchtsnichtSchoenenbornOffenhaeusseretal.2019, author = {Achtsnicht, Stefan and Sch{\"o}nenborn, Kristina and Offenh{\"a}usser, Andreas and Krause, Hans-Joachim}, title = {Measurement of the magnetophoretic velocity of different superparamagnetic beads}, series = {Journal of Magnetism and Magnetic Materials}, volume = {477}, journal = {Journal of Magnetism and Magnetic Materials}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-8853}, doi = {10.1016/j.jmmm.2018.10.066}, pages = {244 -- 248}, year = {2019}, abstract = {The movement of magnetic beads due to a magnetic field gradient is of great interest in different application fields. In this report we present a technique based on a magnetic tweezers setup to measure the velocity factor of magnetically actuated individual superparamagnetic beads in a fluidic environment. Several beads can be tracked simultaneously in order to gain and improve statistics. Furthermore we show our results for different beads with hydrodynamic diameters between 200 and 1000 nm from diverse manufacturers. These measurement data can, for example, be used to determine design parameters for a magnetic separation system, like maximum flow rate and minimum separation time, or to select suitable beads for fixed experimental requirements.}, language = {en} } @article{RabehiGarlanAchtsnichtetal.2018, author = {Rabehi, Amine and Garlan, Benjamin and Achtsnicht, Stefan and Krause, Hans-Joachim and Offenh{\"a}usser, Andreas and Ngo, Kieu and Neveu, Sophie and Graff-Dubois, Stephanie and Kokabi, Hamid}, title = {Magnetic detection structure for Lab-on-Chip applications based on the frequency mixing technique}, series = {Sensors}, volume = {18}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s18061747}, pages = {14 Seiten}, year = {2018}, abstract = {A magnetic frequency mixing technique with a set of miniaturized planar coils was investigated for use with a completely integrated Lab-on-Chip (LoC) pathogen sensing system. The system allows the detection and quantification of superparamagnetic beads. Additionally, in terms of magnetic nanoparticle characterization ability, the system can be used for immunoassays using the beads as markers. Analytical calculations and simulations for both excitation and pick-up coils are presented; the goal was to investigate the miniaturization of simple and cost-effective planar spiral coils. Following these calculations, a Printed Circuit Board (PCB) prototype was designed, manufactured, and tested for limit of detection, linear response, and validation of theoretical concepts. Using the magnetic frequency mixing technique, a limit of detection of 15 µg/mL of 20 nm core-sized nanoparticles was achieved without any shielding.}, language = {en} } @article{ElBerguiAbouabdillahBouriougetal.2023, author = {El Bergui, Omnia and Abouabdillah, Aziz and Bourioug, Mohamed and Schmitz, Dominik and Biel, Markus and Aboudrare, Abdellah and Krauss, Manuel and Jomaa, Ahlem and Romuli, Sebastian and M{\"u}ller, Joachim and Fagroud, Mustapha and Bouabid, Rachid}, title = {Innovative solutions for drought: Evaluating hydrogel application on onion cultivation (Allium cepa) in Morocco}, series = {Water}, volume = {15}, journal = {Water}, number = {11}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/w15111972}, pages = {Artikel 1972}, year = {2023}, abstract = {Throughout the last decade, and particularly in 2022, water scarcity has become a critical concern in Morocco and other Mediterranean countries. The lack of rainfall during spring was worsened by a succession of heat waves during the summer. To address this drought, innovative solutions, including the use of new technologies such as hydrogels, will be essential to transform agriculture. This paper presents the findings of a study that evaluated the impact of hydrogel application on onion (Allium cepa) cultivation in Meknes, Morocco. The treatments investigated in this study comprised two different types of hydrogel-based soil additives (Arbovit® polyacrylate and Huminsorb® polyacrylate), applied at two rates (30 and 20 kg/ha), and irrigated at two levels of water supply (100\% and 50\% of daily crop evapotranspiration; ETc). Two control treatments were included, without hydrogel application and with both water amounts. The experiment was conducted in an open field using a completely randomized design. The results indicated a significant impact of both hydrogel-type dose and water dose on onion plant growth, as evidenced by various vegetation parameters. Among the hydrogels tested, Huminsorb® Polyacrylate produced the most favorable outcomes, with treatment T9 (100\%, HP, 30 kg/ha) yielding 70.55 t/ha; this represented an increase of 11 t/ha as compared to the 100\% ETc treatment without hydrogel application. Moreover, the combination of hydrogel application with 50\% ETc water stress showed promising results, with treatment T4 (HP, 30 kg, 50\%) producing almost the same yield as the 100\% ETc treatment without hydrogel while saving 208 mm of water.}, language = {en} } @article{AbbasHedwigBalcetal.2023, author = {Abbas, Karim and Hedwig, Lukas and Balc, Nicolae and Bremen, Sebastian}, title = {Advanced FFF of PEEK: Infill strategies and material characteristics for rapid tooling}, series = {Polymers}, volume = {2023}, journal = {Polymers}, number = {15}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/polym15214293}, pages = {Artikel 4293}, year = {2023}, abstract = {Traditional vulcanization mold manufacturing is complex, costly, and under pressure due to shorter product lifecycles and diverse variations. Additive manufacturing using Fused Filament Fabrication and high-performance polymers like PEEK offer a promising future in this industry. This study assesses the compressive strength of various infill structures (honeycomb, grid, triangle, cubic, and gyroid) when considering two distinct build directions (Z, XY) to enhance PEEK's economic and resource efficiency in rapid tooling. A comparison with PETG samples shows the behavior of the infill strategies. Additionally, a proof of concept illustrates the application of a PEEK mold in vulcanization. A peak compressive strength of 135.6 MPa was attained in specimens that were 100\% solid and subjected to thermal post-treatment. This corresponds to a 20\% strength improvement in the Z direction. In terms of time and mechanical properties, the anisotropic grid and isotropic cubic infill have emerged for use in rapid tooling. Furthermore, the study highlights that reducing the layer thickness from 0.15 mm to 0.1 mm can result in a 15\% strength increase. The study unveils the successful utilization of a room-temperature FFF-printed PEEK mold in vulcanization injection molding. The parameters and infill strategies identified in this research enable the resource-efficient FFF printing of PEEK without compromising its strength properties. Using PEEK in rapid tooling allows a cost reduction of up to 70\% in tool production.}, language = {en} } @article{LuftLuftArntz2023, author = {Luft, Angela and Luft, Nils and Arntz, Kristian}, title = {A basic description logic for service-oriented architecture in factory planning and operational control in the age of industry 4.0}, series = {Applied Sciences}, volume = {2023}, journal = {Applied Sciences}, number = {13}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/app13137610}, pages = {Artikel 7610}, year = {2023}, abstract = {Manufacturing companies across multiple industries face an increasingly dynamic and unpredictable environment. This development can be seen on both the market and supply side. To respond to these challenges, manufacturing companies must implement smart manufacturing systems and become more flexible and agile. The flexibility in operational planning regarding the scheduling and sequencing of customer orders needs to be increased and new structures must be implemented in manufacturing systems' fundamental design as they constitute much of the operational flexibility available. To this end, smart and more flexible solutions for production planning and control (PPC) are developed. However, scheduling or sequencing is often only considered isolated in a predefined stable environment. Moreover, their orientation on the fundamental logic of the existing IT solutions and their applicability in a dynamic environment is limited. This paper presents a conceptual model for a task-based description logic that can be applied to factory planning, technology planning, and operational control. By using service-oriented architectures, the goal is to generate smart manufacturing systems. The logic is designed to allow for easy and automated maintenance. It is compatible with the existing resource and process allocation logic across operational and strategic factory and production planning.}, language = {en} } @article{BaaderBoxbergChenetal.2023, author = {Baader, Fabian and Boxberg, Marc S. and Chen, Qian and F{\"o}rstner, Roger and Kowalski, Julia and Dachwald, Bernd}, title = {Field-test performance of an ice-melting probe in a terrestrial analogue environment}, series = {Icarus}, journal = {Icarus}, number = {409}, publisher = {Elsevier}, address = {Amsterdam}, doi = {10.1016/j.icarus.2023.115852}, pages = {Artikel 115852}, year = {2023}, abstract = {Melting probes are a proven tool for the exploration of thick ice layers and clean sampling of subglacial water on Earth. Their compact size and ease of operation also make them a key technology for the future exploration of icy moons in our Solar System, most prominently Europa and Enceladus. For both mission planning and hardware engineering, metrics such as efficiency and expected performance in terms of achievable speed, power requirements, and necessary heating power have to be known. Theoretical studies aim at describing thermal losses on the one hand, while laboratory experiments and field tests allow an empirical investigation of the true performance on the other hand. To investigate the practical value of a performance model for the operational performance in extraterrestrial environments, we first contrast measured data from terrestrial field tests on temperate and polythermal glaciers with results from basic heat loss models and a melt trajectory model. For this purpose, we propose conventions for the determination of two different efficiencies that can be applied to both measured data and models. One definition of efficiency is related to the melting head only, while the other definition considers the melting probe as a whole. We also present methods to combine several sources of heat loss for probes with a circular cross-section, and to translate the geometry of probes with a non-circular cross-section to analyse them in the same way. The models were selected in a way that minimizes the need to make assumptions about unknown parameters of the probe or the ice environment. The results indicate that currently used models do not yet reliably reproduce the performance of a probe under realistic conditions. Melting velocities and efficiencies are constantly overestimated by 15 to 50 \% in the models, but qualitatively agree with the field test data. Hence, losses are observed, that are not yet covered and quantified by the available loss models. We find that the deviation increases with decreasing ice temperature. We suspect that this mismatch is mainly due to the too restrictive idealization of the probe model and the fact that the probe was not operated in an efficiency-optimized manner during the field tests. With respect to space mission engineering, we find that performance and efficiency models must be used with caution in unknown ice environments, as various ice parameters have a significant effect on the melting process. Some of these are difficult to estimate from afar.}, language = {en} } @article{UysalFiratCreutzetal.2022, author = {Uysal, Karya and Firat, Ipek Serat and Creutz, Till and Aydin, Inci Cansu and Artmann, Gerhard and Teusch, Nicole and Temiz Artmann, Ayseg{\"u}l}, title = {A novel in vitro wound healing assay using free-standing, ultra-thin PDMS membranes}, series = {membranes}, volume = {2023}, journal = {membranes}, number = {13(1)}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/membranes13010022}, pages = {Artikel 22}, year = {2022}, abstract = {Advances in polymer science have significantly increased polymer applications in life sciences. We report the use of free-standing, ultra-thin polydimethylsiloxane (PDMS) membranes, called CellDrum, as cell culture substrates for an in vitro wound model. Dermal fibroblast monolayers from 28- and 88-year-old donors were cultured on CellDrums. By using stainless steel balls, circular cell-free areas were created in the cell layer (wounding). Sinusoidal strain of 1 Hz, 5\% strain, was applied to membranes for 30 min in 4 sessions. The gap circumference and closure rate of un-stretched samples (controls) and stretched samples were monitored over 4 days to investigate the effects of donor age and mechanical strain on wound closure. A significant decrease in gap circumference and an increase in gap closure rate were observed in trained samples from younger donors and control samples from older donors. In contrast, a significant decrease in gap closure rate and an increase in wound circumference were observed in the trained samples from older donors. Through these results, we propose the model of a cell monolayer on stretchable CellDrums as a practical tool for wound healing research. The combination of biomechanical cell loading in conjunction with analyses such as gene/protein expression seems promising beyond the scope published here.}, language = {en} } @article{ThiebesKleinZingsheimetal.2022, author = {Thiebes, Anja Lena and Klein, Sarah and Zingsheim, Jonas and M{\"o}ller, Georg H. and G{\"u}rzing, Stefanie and Reddemann, Manuel A. and Behbahani, Mehdi and Cornelissen, Christian G.}, title = {Effervescent atomizer as novel cell spray technology to decrease the gas-to-liquid ratio}, series = {pharmaceutics}, volume = {14}, journal = {pharmaceutics}, number = {11}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/pharmaceutics14112421}, pages = {Artikel 2421}, year = {2022}, abstract = {Cell spraying has become a feasible application method for cell therapy and tissue engineering approaches. Different devices have been used with varying success. Often, twin-fluid atomizers are used, which require a high gas velocity for optimal aerosolization characteristics. To decrease the amount and velocity of required air, a custom-made atomizer was designed based on the effervescent principle. Different designs were evaluated regarding spray characteristics and their influence on human adipose-derived mesenchymal stromal cells. The arithmetic mean diameters of the droplets were 15.4-33.5 µm with decreasing diameters for increasing gas-to-liquid ratios. The survival rate was >90\% of the control for the lowest gas-to-liquid ratio. For higher ratios, cell survival decreased to approximately 50\%. Further experiments were performed with the design, which had shown the highest survival rates. After seven days, no significant differences in metabolic activity were observed. The apoptosis rates were not influenced by aerosolization, while high gas-to-liquid ratios caused increased necrosis levels. Tri-lineage differentiation potential into adipocytes, chondrocytes, and osteoblasts was not negatively influenced by aerosolization. Thus, the effervescent aerosolization principle was proven suitable for cell applications requiring reduced amounts of supplied air. This is the first time an effervescent atomizer was used for cell processing.}, language = {en} } @article{BergPostweilerSteuerDankertLeichtScholten2023, author = {Berg-Postweiler, Julia and Steuer-Dankert, Linda and Leicht-Scholten, Carmen}, title = {One size does not fit all: Applying antibias trainings in academia}, series = {The International Journal of Organizational Diversity}, volume = {24}, journal = {The International Journal of Organizational Diversity}, number = {1}, publisher = {Common Ground Research Networks}, issn = {2328-6261 (Print)}, doi = {10.18848/2328-6261/CGP/v24i01/1-23}, pages = {1 -- 23}, year = {2023}, abstract = {Antibias training is increasingly demanded and practiced in academia and industry to increase employees' sensitivity to discrimination, racism, and diversity. Under the heading of "Diversity Management," antibias trainings are mainly offered as one-off workshops intending to raise awareness of unconscious biases, create a diversity-affirming corporate culture, promote awareness of the potential of diversity, and ultimately enable the reflection of diversity in development processes. However, coming from childhood education, research and scientific articles on the sustainable effectiveness of antibias in adulthood, especially in academia, are very scarce. In order to fill this research gap, the article aims to explore how sustainable the effects of individual antibias trainings on participants' behavior are. In order to investigate this, participant observation in a qualitative pre-post setting was conducted, analyzing antibias training in an academic context. Two observers actively participated in the training sessions and documented the activities and reflection processes of the participants. Overall, the results question the effectiveness of single antibias trainings and show that a target-group adaptive approach is mandatory owing to the background of the approach in early childhood education. Therefore, antibias work needs to be adapted to the target group's needs and realities of life. Furthermore, the study reveals that single antibias trainings must be embedded in a holistic diversity management approach to stimulate sustainable reflection processes among the target group. This article is one of the first to scientifically evaluate antibias training effectiveness, especially in engineering sciences and the university context.}, language = {en} } @article{GraesslRenzHezeletal.2013, author = {Gr{\"a}ßl, Andreas and Renz, Wolfgang and Hezel, Fabian and Dieringer, Matthias A. and Winter, Lukas and {\"O}zerdem, Celal and Rieger, Jan and Kellmann, Peter and Santoro, Davide and Lindel, Tomasz D. and Frauenrath, Tobias and Pfeiffer, Harald and Niendorf, Thoralf}, title = {Modular 32-channel transceiver coil array for cardiac MRI at 7.0T}, series = {Magnetic Resonance in Medicine}, volume = {72}, journal = {Magnetic Resonance in Medicine}, number = {1}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.24903}, pages = {276 -- 290}, year = {2013}, abstract = {Purpose To design and evaluate a modular transceiver coil array with 32 independent channels for cardiac MRI at 7.0T. Methods The modular coil array comprises eight independent building blocks, each containing four transceiver loop elements. Numerical simulations were used for B1+ field homogenization and radiofrequency (RF) safety validation. RF characteristics were examined in a phantom study. The array's suitability for accelerated high spatial resolution two-dimensional (2D) FLASH CINE imaging of the heart was examined in a volunteer study. Results Transmission field adjustments and RF characteristics were found to be suitable for the volunteer study. The signal-to-noise intrinsic to 7.0T together with the coil performance afforded a spatial resolution of 1.1 × 1.1 × 2.5 mm3 for 2D CINE FLASH MRI, which is by a factor of 6 superior to standardized CINE protocols used in clinical practice at 1.5T. The 32-channel transceiver array supports one-dimensional acceleration factors of up to R = 4 without impairing image quality significantly. Conclusion The modular 32-channel transceiver cardiac array supports accelerated and high spatial resolution cardiac MRI. The array is compatible with multichannel transmission and provides a technological basis for future clinical assessment of parallel transmission techniques at 7.0T.}, language = {en} } @article{FrauenrathFuchsDieringeretal.2012, author = {Frauenrath, Tobias and Fuchs, Katharina and Dieringer, Matthias A. and {\"O}zerdem, Celal and Patel, Nishan and Renz, Wolfgang and Greiser, Andreas and Elgeti, Thomas and Niendorf, Thoralf}, title = {Detailing the use of magnetohydrodynamic effects for synchronization of MRI with the cardiac cycle: A feasibility study}, series = {Journal of Magnetic Resonance Imaging}, volume = {36}, journal = {Journal of Magnetic Resonance Imaging}, number = {2}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2586}, doi = {10.1002/jmri.23634}, pages = {364 -- 372}, year = {2012}, abstract = {Purpose: To investigate the feasibility of using magnetohydrodynamic (MHD) effects for synchronization of magnetic resonance imaging (MRI) with the cardiac cycle. Materials and Methods: The MHD effect was scrutinized using a pulsatile flow phantom at B0 = 7.0 T. MHD effects were examined in vivo in healthy volunteers (n = 10) for B0 ranging from 0.05-7.0 T. Noncontrast-enhanced MR angiography (MRA) of the carotids was performed using a gated steady-state free-precession (SSFP) imaging technique in conjunction with electrocardiogram (ECG) and MHD synchronization. Results: The MHD potential correlates with flow velocities derived from phase contrast MRI. MHD voltages depend on the orientation between B0 and the flow of a conductive fluid. An increase in the interelectrode spacing along the flow increases the MHD potential. In vivo measurement of the MHD effect provides peak voltages of 1.5 mV for surface areas close to the common carotid artery at B0 = 7.0 T. Synchronization of MRI with the cardiac cycle using MHD triggering is feasible. MHD triggered MRA of the carotids at 3.0 T showed an overall image quality and richness of anatomic detail, which is comparable to ECG-triggered MRAs. Conclusion: This feasibility study demonstrates the use of MHD effects for synchronization of MR acquisitions with the cardiac cycle. J. Magn. Reson. Imaging 2012;36:364-372. © 2012 Wiley Periodicals, Inc.}, language = {en} } @article{GrandeMeffertSchoenbergeretal.2012, author = {Grande, Marion and Meffert, Elisabeth and Schoenberger, Eva and Jung, Stefanie and Frauenrath, Tobias and Huber, Walter and Hussmann, Katja and Moormann, Mareike and Heim, Stefan}, title = {From a concept to a word in a syntactically complete sentence: An fMRI study on spontaneous language production in an overt picture description task}, series = {NeuroImage}, volume = {61}, journal = {NeuroImage}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1522-2586}, doi = {10.1016/j.neuroimage.2012.03.087}, pages = {702 -- 714}, year = {2012}, abstract = {Spontaneous language has rarely been subjected to neuroimaging studies. This study therefore introduces a newly developed method for the analysis of linguistic phenomena observed in continuous language production during fMRI. Most neuroimaging studies investigating language have so far focussed on single word or — to a smaller extent — sentence processing, mostly due to methodological considerations. Natural language production, however, is far more than the mere combination of words to larger units. Therefore, the present study aimed at relating brain activation to linguistic phenomena like word-finding difficulties or syntactic completeness in a continuous language fMRI paradigm. A picture description task with special constraints was used to provoke hesitation phenomena and speech errors. The transcribed speech sample was segmented into events of one second and each event was assigned to one category of a complex schema especially developed for this purpose. The main results were: conceptual planning engages bilateral activation of the precuneus. Successful lexical retrieval is accompanied - particularly in comparison to unsolved word-finding difficulties - by the left middle and superior temporal gyrus. Syntactic completeness is reflected in activation of the left inferior frontal gyrus (IFG) (area 44). In sum, the method has proven to be useful for investigating the neural correlates of lexical and syntactic phenomena in an overt picture description task. This opens up new prospects for the analysis of spontaneous language production during fMRI.}, language = {en} } @article{MartinFrauenrathOezerdemetal.2011, author = {Martin, Conrad and Frauenrath, Tobias and {\"O}zerdem, Celal and Renz, Wolfgang and Niendorf, Thoralf}, title = {Development and evaluation of a small and mobile Magneto Alert Sensor (MALSE) to support safety requirements for magnetic resonance imaging}, series = {European Radiology}, volume = {21}, journal = {European Radiology}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1432-1084}, doi = {10.1007/s00330-011-2153-z}, pages = {2187 -- 2192}, year = {2011}, abstract = {Objective The purpose of this study is to (i) design a small and mobile Magnetic field ALert SEnsor (MALSE), (ii) to carefully evaluate its sensors to their consistency of activation/deactivation and sensitivity to magnetic fields, and (iii) to demonstrate the applicability of MALSE in 1.5 T, 3.0 T and 7.0 T MR fringe field environments. Methods MALSE comprises a set of reed sensors, which activate in response to their exposure to a magnetic field. The activation/deactivation of reed sensors was examined by moving them in/out of the fringe field generated by 7TMR. Results The consistency with which individual reed sensors would activate at the same field strength was found to be 100\% for the setup used. All of the reed switches investigated required a substantial drop in ambient magnetic field strength before they deactivated. Conclusions MALSE is a simple concept for alerting MRI staff to a ferromagnetic object being brought into fringe magnetic fields which exceeds MALSEs activation magnetic field. MALSE can easily be attached to ferromagnetic objects within the vicinity of a scanner, thus creating a barrier for hazardous situations induced by ferromagnetic parts which should not enter the vicinity of an MR-system to occur.}, language = {en} } @article{DieringerRenzLindeletal.2011, author = {Dieringer, Matthias A. and Renz, Wolfgang and Lindel, Tomasz D. and Seifert, Frank and Frauenrath, Tobias and von Knobelsdorf-Brenkenhoff, Florian and Waiczies, Helmar and Hoffmann, Werner and Rieger, Jan and Pfeiffer, Harald and Ittermann, Bernd and Schulz-Menger, Jeanette and Niendorf, Thoralf}, title = {Design and application of a four-channel transmit/receive surface coil for functional cardiac imaging at 7T}, series = {Journal of Magnetic Resonance Imaging}, volume = {33}, journal = {Journal of Magnetic Resonance Imaging}, number = {3}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2586}, doi = {10.1002/jmri.22451}, pages = {736 -- 741}, year = {2011}, abstract = {Purpose To design and evaluate a four-channel cardiac transceiver coil array for functional cardiac imaging at 7T. Materials and Methods A four-element cardiac transceiver surface coil array was developed with two rectangular loops mounted on an anterior former and two rectangular loops on a posterior former. specific absorption rate (SAR) simulations were performed and a Burn:x-wiley:10531807:media:JMRI22451:tex2gif-stack-1 calibration method was applied prior to obtain 2D FLASH CINE (mSENSE, R = 2) images from nine healthy volunteers with a spatial resolution of up to 1 × 1 × 2.5 mm3. Results Tuning and matching was found to be better than 10 dB for all subjects. The decoupling (S21) was measured to be >18 dB between neighboring loops, >20 dB for opposite loops, and >30 dB for other loop combinations. SAR values were well within the limits provided by the IEC. Imaging provided clinically acceptable signal homogeneity with an excellent blood-myocardium contrast applying the Burn:x-wiley:10531807:media:JMRI22451:tex2gif-stack-2 calibration approach. Conclusion A four-channel cardiac transceiver coil array for 7T was built, allowing for cardiac imaging with clinically acceptable signal homogeneity and an excellent blood-myocardium contrast. Minor anatomic structures, such as pericardium, mitral, and tricuspid valves and their apparatus, as well as trabeculae, were accurately delineated.}, language = {en} } @article{AyalaHarrisKleefeldetal.2023, author = {Ayala, Rafael Ceja and Harris, Isaac and Kleefeld, Andreas and Pallikarakis, Nikolaos}, title = {Analysis of the transmission eigenvalue problem with two conductivity parameters}, series = {Applicable Analysis}, journal = {Applicable Analysis}, publisher = {Taylor \& Francis}, issn = {0003-6811}, doi = {10.1080/00036811.2023.2181167}, pages = {37 Seiten}, year = {2023}, abstract = {In this paper, we provide an analytical study of the transmission eigenvalue problem with two conductivity parameters. We will assume that the underlying physical model is given by the scattering of a plane wave for an isotropic scatterer. In previous studies, this eigenvalue problem was analyzed with one conductive boundary parameter whereas we will consider the case of two parameters. We prove the existence and discreteness of the transmission eigenvalues as well as study the dependence on the physical parameters. We are able to prove monotonicity of the first transmission eigenvalue with respect to the parameters and consider the limiting procedure as the second boundary parameter vanishes. Lastly, we provide extensive numerical experiments to validate the theoretical work.}, language = {en} } @article{FunkeBeckmann2022, author = {Funke, Harald and Beckmann, Nils}, title = {Flexible fuel operation of a Dry-Low-NOx Micromix Combustor with Variable Hydrogen Methane Mixture}, series = {International Journal of Gas Turbine, Propulsion and Power Systems}, volume = {13}, journal = {International Journal of Gas Turbine, Propulsion and Power Systems}, number = {2}, issn = {1882-5079}, pages = {1 -- 7}, year = {2022}, abstract = {The role of hydrogen (H2) as a carbon-free energy carrier is discussed since decades for reducing greenhouse gas emissions. As bridge technology towards a hydrogen-based energy supply, fuel mixtures of natural gas or methane (CH4) and hydrogen are possible. The paper presents the first test results of a low-emission Micromix combustor designed for flexible-fuel operation with variable H2/CH4 mixtures. The numerical and experimental approach for considering variable fuel mixtures instead of recently investigated pure hydrogen is described. In the experimental studies, a first generation FuelFlex Micromix combustor geometry is tested at atmospheric pressure at gas turbine operating conditions corresponding to part- and full-load. The H2/CH4 fuel mixture composition is varied between 57 and 100 vol.\% hydrogen content. Despite the challenges flexible-fuel operation poses onto the design of a combustion system, the evaluated FuelFlex Micromix prototype shows a significant low NOx performance}, language = {en} } @article{KetelhutBrueggeGoelletal.2020, author = {Ketelhut, Maike and Br{\"u}gge, G. M. and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Adaptive iterative learning control of an industrial robot during neuromuscular training}, series = {IFAC PapersOnLine}, volume = {53}, journal = {IFAC PapersOnLine}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2020.12.741}, pages = {16468 -- 16475}, year = {2020}, abstract = {To prevent the reduction of muscle mass and loss of strength coming along with the human aging process, regular training with e.g. a leg press is suitable. However, the risk of training-induced injuries requires the continuous monitoring and controlling of the forces applied to the musculoskeletal system as well as the velocity along the motion trajectory and the range of motion. In this paper, an adaptive norm-optimal iterative learning control algorithm to minimize the knee joint loadings during the leg extension training with an industrial robot is proposed. The response of the algorithm is tested in simulation for patients with varus, normal and valgus alignment of the knee and compared to the results of a higher-order iterative learning control algorithm, a robust iterative learning control and a recently proposed conventional norm-optimal iterative learning control algorithm. Although significant improvements in performance are made compared to the conventional norm-optimal iterative learning control algorithm with a small learning factor, for the developed approach as well as the robust iterative learning control algorithm small steady state errors occur.}, language = {en} } @article{KetelhutKolditzGoelletal.2019, author = {Ketelhut, Maike and Kolditz, Melanie and G{\"o}ll, Fabian and Braunstein, Bjoern and Albracht, Kirsten and Abel, Dirk}, title = {Admittance control of an industrial robot during resistance training}, series = {IFAC-PapersOnLine}, volume = {52}, journal = {IFAC-PapersOnLine}, number = {19}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2405-8963}, doi = {10.1016/j.ifacol.2019.12.102}, pages = {223 -- 228}, year = {2019}, abstract = {Neuromuscular strength training of the leg extensor muscles plays an important role in the rehabilitation and prevention of age and wealth related diseases. In this paper, we focus on the design and implementation of a Cartesian admittance control scheme for isotonic training, i.e. leg extension and flexion against a predefined weight. For preliminary testing and validation of the designed algorithm an experimental research and development platform consisting of an industrial robot and a force plate mounted at its end-effector has been used. Linear, diagonal and arbitrary two-dimensional motion trajectories with different weights for the leg extension and flexion part are applied. The proposed algorithm is easily adaptable to trajectories consisting of arbitrary six-dimensional poses and allows the implementation of individualized trajectories.}, language = {en} } @article{BruksleChwallekKrastina2023, author = {Bruksle, Ieva and Chwallek, Constanze and Krastina, Anzelika}, title = {Strengthening sustainability in entrepreneurship education - implications for shifting entrepreneurial thinking towards sustainability at universities}, series = {ACTA PROSPERITATIS}, volume = {14}, journal = {ACTA PROSPERITATIS}, number = {1}, publisher = {Sciendo}, issn = {1691-6077}, doi = {10.37804/1691-6077-2023-14-37-48}, pages = {37 -- 48}, year = {2023}, abstract = {By developing innovative solutions to social and environmental problems, sustainable ventures carry greatpotential. Entrepreneurship which focuses especially on new venture creation can be developed through education anduniversities, in particular, are called upon to provide an impetus for social change. But social innovations are associatedwith certain hurdles, which are related to the multi-dimensionality, i.e. the tension between creating social,environmental and economic value and dealing with a multiplicity of stakeholders. The already complex field ofentrepreneurship education has to face these challenges. This paper, therefore, aims to identify starting points for theintegration of sustainability into entrepreneurship education. To pursue this goal experiences from three differentproject initiatives between the partner universities: Lapland University of Applied Sciences, FH Aachen University ofApplied Sciences and Turiba University are reflected and findings are systematically condensed into recommendationsfor education on sustainable entrepreneurship.}, language = {en} } @article{WerkhausenCroninAlbrachtetal.2019, author = {Werkhausen, Amelie and Cronin, Neil J. and Albracht, Kirsten and Paulsen, G{\o}ran and Larsen, Askild V. and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R.}, title = {Training-induced increase in Achilles tendon stiffness affects tendon strain pattern during running}, series = {PeerJ}, journal = {PeerJ}, publisher = {Peer}, address = {London}, issn = {21678359}, doi = {10.7717/peerj.6764}, pages = {18 Seiten}, year = {2019}, abstract = {Background During the stance phase of running, the elasticity of the Achilles tendon enables the utilisation of elastic energy and allows beneficial contractile conditions for the triceps surae muscles. However, the effect of changes in tendon mechanical properties induced by chronic loading is still poorly understood. We tested the hypothesis that a training-induced increase in Achilles tendon stiffness would result in reduced tendon strain during the stance phase of running, which would reduce fascicle strains in the triceps surae muscles, particularly in the mono-articular soleus. Methods Eleven subjects were assigned to a training group performing isometric singleleg plantarflexion contractions three times per week for ten weeks, and another ten subjects formed a control group. Before and after the training period, Achilles tendon stiffness was estimated, and muscle-tendon mechanics were assessed during running at preferred speed using ultrasonography, kinematics and kinetics. Results Achilles tendon stiffness increased by 18\% (P <0:01) in the training group, but the associated reduction in strain seen during isometric contractions was not statistically significant. Tendon elongation during the stance phase of running was similar after training, but tendon recoil was reduced by 30\% (P <0:01), while estimated tendon force remained unchanged. Neither gastrocnemius medialis nor soleus fascicle shortening during stance was affected by training. Discussion These results show that a training-induced increase in Achilles tendon stiffness altered tendon behaviour during running. Despite training-induced changes in tendon mechanical properties and recoil behaviour, the data suggest that fascicle shortening patterns were preserved for the running speed that we examined. The asymmetrical changes in tendon strain patterns supports the notion that simple inseries models do not fully explain the mechanical output of the muscle-tendon unit during a complex task like running.}, language = {en} } @article{KetelhutGoellBraunsteinetal.2018, author = {Ketelhut, Maike and G{\"o}ll, Fabian and Braunstein, Bj{\"o}rn and Albracht, Kirsten and Abel, Dirk}, title = {Comparison of different training algorithms for the leg extension training with an industrial robot}, series = {Current Directions in Biomedical Engineering}, volume = {4}, journal = {Current Directions in Biomedical Engineering}, number = {1}, publisher = {De Gruyter}, address = {Berlin}, issn = {2364-5504}, doi = {10.1515/cdbme-2018-0005}, pages = {17 -- 20}, year = {2018}, abstract = {In the past, different training scenarios have been developed and implemented on robotic research platforms, but no systematic analysis and comparison have been done so far. This paper deals with the comparison of an isokinematic (motion with constant velocity) and an isotonic (motion against constant weight) training algorithm. Both algorithms are designed for a robotic research platform consisting of a 3D force plate and a high payload industrial robot, which allows leg extension training with arbitrary six-dimensional motion trajectories. In the isokinematic as well as the isotonic training algorithm, individual paths are defined i n C artesian s pace by sufficient s upport p oses. I n t he i sotonic t raining s cenario, the trajectory is adapted to the measured force as the robot should only move along the trajectory as long as the force applied by the user exceeds a minimum threshold. In the isotonic training scenario however, the robot's acceleration is a function of the force applied by the user. To validate these findings, a simulative experiment with a simple linear trajectory is performed. For this purpose, the same force path is applied in both training scenarios. The results illustrate that the algorithms differ in the force dependent trajectory adaption.}, language = {en} } @article{BungErpicumTullis2020, author = {Bung, Daniel Bernhard and Erpicum, S{\´e}bastien and Tullis, Blanke P.}, title = {Advances in hydraulic structures engineering}, series = {Journal of Hydraulic Engineering}, volume = {147}, journal = {Journal of Hydraulic Engineering}, number = {1}, publisher = {ASCE}, address = {Reston, Va.}, issn = {0733-9429 (Druckausgabe)}, doi = {10.1061/(ASCE)HY.1943-7900.0001851}, pages = {1 Seite}, year = {2020}, language = {en} } @article{KochBoehnischVerdoncketal.2024, author = {Koch, Christopher and B{\"o}hnisch, Nils and Verdonck, Hendrik and Hach, Oliver and Braun, Carsten}, title = {Comparison of unsteady low- and mid-fidelity propeller aerodynamic methods for whirl flutter applications}, series = {Applied Sciences}, volume = {14}, journal = {Applied Sciences}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app14020850}, pages = {1 -- 28}, year = {2024}, abstract = {Aircraft configurations with propellers have been drawing more attention in recent times, partly due to new propulsion concepts based on hydrogen fuel cells and electric motors. These configurations are prone to whirl flutter, which is an aeroelastic instability affecting airframes with elastically supported propellers. It commonly needs to be mitigated already during the design phase of such configurations, requiring, among other things, unsteady aerodynamic transfer functions for the propeller. However, no comprehensive assessment of unsteady propeller aerodynamics for aeroelastic analysis is available in the literature. This paper provides a detailed comparison of nine different low- to mid-fidelity aerodynamic methods, demonstrating their impact on linear, unsteady aerodynamics, as well as whirl flutter stability prediction. Quasi-steady and unsteady methods for blade lift with or without coupling to blade element momentum theory are evaluated and compared to mid-fidelity potential flow solvers (UPM and DUST) and classical, derivative-based methods. Time-domain identification of frequency-domain transfer functions for the unsteady propeller hub loads is used to compare the different methods. Predictions of the minimum required pylon stiffness for stability show good agreement among the mid-fidelity methods. The differences in the stability predictions for the low-fidelity methods are higher. Most methods studied yield a more unstable system than classical, derivative-based whirl flutter analysis, indicating that the use of more sophisticated aerodynamic modeling techniques might be required for accurate whirl flutter prediction.}, language = {en} } @article{StaeudleSeynnesLapsetal.2022, author = {St{\"a}udle, Benjamin and Seynnes, Olivier and Laps, Guido and Br{\"u}ggemann, Gert-Peter and Albracht, Kirsten}, title = {Altered gastrocnemius contractile behavior in former achilles tendon rupture patients during walking}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2022.792576}, pages = {12 Seiten}, year = {2022}, abstract = {Achilles tendon rupture (ATR) remains associated with functional limitations years after injury. Architectural remodeling of the gastrocnemius medialis (GM) muscle is typically observed in the affected leg and may compensate force deficits caused by a longer tendon. Yet patients seem to retain functional limitations during—low-force—walking gait. To explore the potential limits imposed by the remodeled GM muscle-tendon unit (MTU) on walking gait, we examined the contractile behavior of muscle fascicles during the stance phase. In a cross-sectional design, we studied nine former patients (males; age: 45 ± 9 years; height: 180 ± 7 cm; weight: 83 ± 6 kg) with a history of complete unilateral ATR, approximately 4 years post-surgery. Using ultrasonography, GM tendon morphology, muscle architecture at rest, and fascicular behavior were assessed during walking at 1.5 m⋅s-1 on a treadmill. Walking patterns were recorded with a motion capture system. The unaffected leg served as control. Lower limbs kinematics were largely similar between legs during walking. Typical features of ATR-related MTU remodeling were observed during the stance sub-phases corresponding to series elastic element (SEE) lengthening (energy storage) and SEE shortening (energy release), with shorter GM fascicles (36 and 36\%, respectively) and greater pennation angles (8° and 12°, respectively). However, relative to the optimal fascicle length for force production, fascicles operated at comparable length in both legs. Similarly, when expressed relative to optimal fascicle length, fascicle contraction velocity was not different between sides, except at the time-point of peak series elastic element (SEE) length, where it was 39 ± 49\% lower in the affected leg. Concomitantly, fascicles rotation during contraction was greater in the affected leg during the whole stance-phase, and architectural gear ratios (AGR) was larger during SEE lengthening. Under the present testing conditions, former ATR patients had recovered a relatively symmetrical walking gait pattern. Differences in seen AGR seem to accommodate the profound changes in MTU architecture, limiting the required fascicle shortening velocity. Overall, the contractile behavior of the GM fascicles does not restrict length- or velocity-dependent force potentials during this locomotor task.}, language = {en} } @article{RichterBraunsteinStaeudleetal.2021, author = {Richter, Charlotte and Braunstein, Bjoern and St{\"a}udle, Benjamin and Attias, Julia and Suess, Alexander and Weber, Tobias and Mileva, Katja N. and Rittweger, Joern and Green, David A. and Albracht, Kirsten}, title = {Gastrocnemius medialis contractile behavior is preserved during 30\% body weight supported gait training}, series = {Frontiers in Sports and Active Living}, volume = {2021}, journal = {Frontiers in Sports and Active Living}, number = {2}, publisher = {Frontiers}, address = {Lausanne}, issn = {2624-9367}, doi = {10.3389/fspor.2020.614559}, pages = {Artikel 614559}, year = {2021}, abstract = {Rehabilitative body weight supported gait training aims at restoring walking function as a key element in activities of daily living. Studies demonstrated reductions in muscle and joint forces, while kinematic gait patterns appear to be preserved with up to 30\% weight support. However, the influence of body weight support on muscle architecture, with respect to fascicle and series elastic element behavior is unknown, despite this having potential clinical implications for gait retraining. Eight males (31.9 ± 4.7 years) walked at 75\% of the speed at which they typically transition to running, with 0\% and 30\% body weight support on a lower-body positive pressure treadmill. Gastrocnemius medialis fascicle lengths and pennation angles were measured via ultrasonography. Additionally, joint kinematics were analyzed to determine gastrocnemius medialis muscle-tendon unit lengths, consisting of the muscle's contractile and series elastic elements. Series elastic element length was assessed using a muscle-tendon unit model. Depending on whether data were normally distributed, a paired t-test or Wilcoxon signed rank test was performed to determine if body weight supported walking had any effects on joint kinematics and fascicle-series elastic element behavior. Walking with 30\% body weight support had no statistically significant effect on joint kinematics and peak series elastic element length. Furthermore, at the time when peak series elastic element length was achieved, and on average across the entire stance phase, muscle-tendon unit length, fascicle length, pennation angle, and fascicle velocity were unchanged with respect to body weight support. In accordance with unchanged gait kinematics, preservation of fascicle-series elastic element behavior was observed during walking with 30\% body weight support, which suggests transferability of gait patterns to subsequent unsupported walking.}, language = {en} } @article{QuittmannAbelAlbrachtetal.2022, author = {Quittmann, Oliver J. and Abel, Thomas and Albracht, Kirsten and Str{\"u}der, Heiko K.}, title = {Biomechanics of all-out handcycling exercise: kinetics, kinematics and muscular activity of a 15-s sprint test in able-bodied participants}, series = {Sports Biomechanics}, volume = {21}, journal = {Sports Biomechanics}, number = {10}, publisher = {Taylor \& Francis}, address = {London}, issn = {1752-6116 (Onlineausgabe)}, doi = {10.1080/14763141.2020.1745266}, pages = {1200 -- 1223}, year = {2022}, abstract = {This study aims to quantify the kinematics, kinetics and muscular activity of all-out handcycling exercise and examine their alterations during the course of a 15-s sprint test. Twelve able-bodied competitive triathletes performed a 15-s all-out sprint test in a recumbent racing handcycle that was attached to an ergometer. During the sprint test, tangential crank kinetics, 3D joint kinematics and muscular activity of 10 muscles of the upper extremity and trunk were examined using a power metre, motion capturing and surface electromyography (sEMG), respectively. Parameters were compared between revolution one (R1), revolution two (R2), the average of revolution 3 to 13 (R3) and the average of the remaining revolutions (R4). Shoulder abduction and internal-rotation increased, whereas maximal shoulder retroversion decreased during the sprint. Except for the wrist angles, angular velocity increased for every joint of the upper extremity. Several muscles demonstrated an increase in muscular activation, an earlier onset of muscular activation in crank cycle and an increased range of activation. During the course of a 15-s all-out sprint test in handcycling, the shoulder muscles and the muscles associated to the push phase demonstrate indications for short-duration fatigue. These findings are helpful to prevent injuries and improve performance in all-out handcycling.}, language = {en} } @article{WerkhausenWillwacherAlbracht2021, author = {Werkhausen, Amelie and Willwacher, Steffen and Albracht, Kirsten}, title = {Medial gastrocnemius muscle fascicles shorten throughout stance during sprint acceleration}, series = {Scandinavian Journal of Medicine \& Science in Sports}, volume = {31}, journal = {Scandinavian Journal of Medicine \& Science in Sports}, number = {7}, publisher = {Wiley-Blackwell}, address = {Oxford}, issn = {0905-7188 (Druckausgabe)}, doi = {10.1111/sms.13956}, pages = {1471 -- 1480}, year = {2021}, abstract = {The compliant nature of distal limb muscle-tendon units is traditionally considered suboptimal in explosive movements when positive joint work is required. However, during accelerative running, ankle joint net mechanical work is positive. Therefore, this study aims to investigate how plantar flexor muscle-tendon behavior is modulated during fast accelerations. Eleven female sprinters performed maximum sprint accelerations from starting blocks, while gastrocnemius muscle fascicle lengths were estimated using ultrasonography. We combined motion analysis and ground reaction force measurements to assess lower limb joint kinematics and kinetics, and to estimate gastrocnemius muscle-tendon unit length during the first two acceleration steps. Outcome variables were resampled to the stance phase and averaged across three to five trials. Relevant scalars were extracted and analyzed using one-sample and two-sample t-tests, and vector trajectories were compared using statistical parametric mapping. We found that an uncoupling of muscle fascicle behavior from muscle-tendon unit behavior is effectively used to produce net positive mechanical work at the joint during maximum sprint acceleration. Muscle fascicles shortened throughout the first and second steps, while shortening occurred earlier during the first step, where negative joint work was lower compared with the second step. Elastic strain energy may be stored during dorsiflexion after touchdown since fascicles did not lengthen at the same time to dissipate energy. Thus, net positive work generation is accommodated by the reuse of elastic strain energy along with positive gastrocnemius fascicle work. Our results show a mechanism of how muscles with high in-series compliance can contribute to net positive joint work.}, language = {en} } @article{MontiWaldvogelRitzmannetal.2021, author = {Monti, Elena and Waldvogel, Janice and Ritzmann, Ramona and Freyler, Kathrin and Albracht, Kirsten and Helm, Michael and De Cesare, Niccol{\`o} and Pavan, Piero and Reggiani, Carlo and Gollhofer, Albert and Narici, Marco Vincenzo}, title = {Muscle in variable gravity: "I do not know where I am, but I know what to do"}, series = {Frontiers in Physiology}, volume = {12}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2021.714655}, pages = {19 Seiten}, year = {2021}, abstract = {Performing tasks, such as running and jumping, requires activation of the agonist and antagonist muscles before (motor unit pre-activation) and during movement performance (Santello and Mcdonagh, 1998). A well-timed and regulated muscle activation elicits a stretch-shortening cycle (SSC) response, naturally occurring in bouncing movements (Ishikawa and Komi, 2004; Taube et al., 2012). By definition, the SSC describes the stretching of a pre-activated muscle-tendon complex immediately followed by a muscle shortening in the concentric push-off phase (Komi, 1984). Given the importance of SSC actions for human movement, it is not surprising that many studies investigated the biomechanics of this phenomenon; in particular, drop jumps (DJs) represent a good paradigm to study muscle fascicle and tendon behavior in ballistic movements involving the SSC. Within a DJ, three main phases [pre-activation, braking, and push-off (PO; Komi, 2000)] have been recognized and extensively studied in common and challenging conditions, such as changes in load, falling height, or simulated hypo-gravity (Avela et al., 1994; Arampatzis et al., 2001; Fukashiro et al., 2005; Ishikawa et al., 2005; Sousa et al., 2007; Ritzmann et al., 2016; Helm et al., 2020). These studies show that the timing and amount of triceps-surae muscle-tendon unit pre-activation in DJs are differentially regulated based on the load applied to the muscle, being optimal in normal "Earth" gravity conditions (Avela et al., 1994), but decreased in simulated hypo-gravity, hyper-gravity (Avela et al., 1994; Ritzmann et al., 2016), or unknown conditions (i.e., unknown falling heights; Helm et al., 2020). Some authors indicated that, when falling from heights different from the optimal one [defined as the drop height giving a maximum DJ performance indicated as peak ground reaction force (GRF) or jump high], electromyographic (EMG) activity of the plantar flexors increases from lower than optimal to higher than optimal heights (Ishikawa and Komi, 2004; Sousa et al., 2007). These findings highlight the ability of the central nervous system to regulate the timing and amount of pre-activation according to different jumping conditions, thus regulating muscle fascicle length, tendon and joint stiffness as well as position, in order to safely land on the ground and quickly re-bounce. Similarly, to pre-activation, also in the braking phase, the plantar flexors are differentially regulated. In optimal height (i.e., load) jumping conditions, gastrocnemius medialis (GM) fascicles shorten at early ground contact (possibly due to the intervention of the stretch reflex; Gollhofer et al., 1992) and behave quasi-isometrically in the late braking phase, enabling tendon elongation, and storage of elastic energy (Gollhofer et al., 1992; Fukashiro et al., 2005; Sousa et al., 2007). When increasing the falling height (augmenting the impact GRF), the quasi-isometric behavior of fascicles disappears, and fast fascicle lengthening occurs (Ishikawa et al., 2005; Sousa et al., 2007). In the third and last PO phase, fascicles shorten and the tendon releases the elastic energy previously stored. Bobbert et al. (1987) reported no influence of jumping height on the work done and on the net vertical impulse assessed during PO; this observation suggests that, despite an optimal DJ performance might be achieved only in specific conditions (falling heights, loads), the central nervous system seems to be able to regulate muscle behavior in order to effectively perform the required task also in challenging situations. Although the regulation of triceps-surae muscle-tendon unit in DJs has been extensively investigated, very few studies focused on sarcomeres behavior during the performance of this SSC movement (Kurokawa et al., 2003; Fukashiro et al., 2005, 2006). Sarcomeres represent muscle contractile units and are known to express different amounts of force depending on their length (Gordon et al., 1966; Walker and Schrodt, 1974); thus, understanding the time course of their responses during DJs is fundamental to gain further insights into muscle force-generating capacity. In vivo measurement of sarcomere length in humans has been so far been performed only in static positions and under highly controlled experimental conditions (Llewellyn et al., 2008; Sanchez et al., 2015). Instead, human sarcomere length estimation (achieved by dividing GM measured fascicle length for a fixed sarcomere number) in dynamic contractions provided an indirect measure of sarcomere operating range during squat jump, countermovement jump, and DJ (Fukashiro et al., 2005, 2006; Kurokawa et al., 2003). The results of these studies showed that sarcomeres operate in the ascending limb of their length-tension (L-T) relationship in all types of jumps, and particularly so in DJ. However, most of the available observations on sarcomere and muscle fascicle behavior were made in condition of constant gravity. Thus, in order to understand how sarcomere and muscle fascicle length are regulated in variable gravity conditions, we performed experiments in a parabolic flight, involving variable gravity levels, ranging from about zero-g to about double the Earth's gravity (1 g; Waldvogel et al., 2021). Specifically, the aims of the present study were as follows: 1. To investigate the ability of the neuromuscular system in regulating fascicle length in response to conditions of variable gravity. 2. To estimate sarcomere operative length in the different DJ phases, in order to calculate its theoretical force production and its possible modulation in conditions of variable gravity. We hypothesized that muscle fascicles would be differentially regulated in different gravity conditions compared to 1 g, particularly in anticipation of landing and re-bouncing in unknown gravity levels. In addition, we hypothesized that sarcomeres would operate in the upper part of the ascending limb of their L-T relationship, possibly lengthening during the braking phase (especially in hyper-gravity) while operating quasi-isometrically in 1 g.}, language = {en} } @article{StaeudleSeynnesLapsetal.2021, author = {St{\"a}udle, Benjamin and Seynnes, Olivier and Laps, Guido and G{\"o}ll, Fabian and Br{\"u}ggemann, Gert-Peter and Albracht, Kirsten}, title = {Recovery from achilles tendon repair: a combination of Postsurgery Outcomes and Insufficient remodeling of muscle and tendon}, series = {Medicine \& Science in Sports \& Exercise}, volume = {53}, journal = {Medicine \& Science in Sports \& Exercise}, number = {7}, publisher = {American College of Sports Medicine}, address = {Philadelphia, Pa.}, issn = {1530-0315}, doi = {10.1249/MSS.0000000000002592}, pages = {1356 -- 1366}, year = {2021}, abstract = {Achilles tendon rupture (ATR) patients have persistent functional deficits in the triceps surae muscle-tendon unit (MTU). The complex remodeling of the MTU accompanying these deficits remains poorly understood. The purpose of the present study was to associate in vivo and in silico data to investigate the relations between changes inMTU properties and strength deficits inATR patients. Methods: Elevenmale subjects who had undergone surgical repair of complete unilateral ATR were examined 4.6 ± 2.0 (mean ± SD) yr after rupture. Gastrocnemius medialis (GM) tendon stiffness, morphology, and muscle architecture were determined using ultrasonography. The force-length relation of the plantar flexor muscles was assessed at five ankle joint angles. In addition, simulations (OpenSim) of the GM MTU force-length properties were performed with various iterations of MTU properties found between the unaffected and the affected side. Results: The affected side of the patients displayed a longer, larger, and stiffer GM tendon (13\% ± 10\%, 105\% ± 28\%, and 54\% ± 24\%, respectively) compared with the unaffected side. The GM muscle fascicles of the affected side were shorter (32\% ± 12\%) and with greater pennation angles (31\% ± 26\%). A mean deficit in plantarflexion moment of 31\% ± 10\% was measured. Simulations indicate that pairing an intact muscle with a longer tendon shifts the optimal angular range of peak force outside physiological angular ranges, whereas the shorter muscle fascicles and tendon stiffening seen in the affected side decrease this shift, albeit incompletely. Conclusions: These results suggest that the substantial changes in MTU properties found in ATR patients may partly result from compensatory remodeling, although this process appears insufficient to fully restore muscle function.}, language = {en} } @article{SavitskayaZhantlessovaKistaubayevaetal.2023, author = {Savitskaya, Irina and Zhantlessova, Sirina and Kistaubayeva, Aida and Ignatova, Ludmila and Shokatayeva, Dina and Sinyavsky, Yuriy and Kushugulova, Almagul and Digel, Ilya}, title = {Prebiotic cellulose-pullulan matrix as a "vehicle" for probiotic biofilm delivery to the host large intestine}, series = {Polymers}, journal = {Polymers}, number = {16(1)}, publisher = {MDPI}, address = {Basel}, doi = {10.3390/polym16010030}, pages = {Artikel 30}, year = {2023}, abstract = {This study describes the development of a new combined polysaccharide-matrix-based technology for the immobilization of Lactobacillus rhamnosus GG (LGG) bacteria in biofilm form. The new composition allows for delivering the bacteria to the digestive tract in a manner that improves their robustness compared with planktonic cells and released biofilm cells. Granules consisting of a polysaccharide matrix with probiotic biofilms (PMPB) with high cell density (>9 log CFU/g) were obtained by immobilization in the optimized nutrient medium. Successful probiotic loading was confirmed by fluorescence microscopy and scanning electron microscopy. The developed prebiotic polysaccharide matrix significantly enhanced LGG viability under acidic (pH 2.0) and bile salt (0.3\%) stress conditions. Enzymatic extract of feces, mimicking colon fluid in terms of cellulase activity, was used to evaluate the intestinal release of probiotics. PMPB granules showed the ability to gradually release a large number of viable LGG cells in the model colon fluid. In vivo, the oral administration of PMPB granules in rats resulted in the successful release of probiotics in the colon environment. The biofilm-forming incubation method of immobilization on a complex polysaccharide matrix tested in this study has shown high efficacy and promising potential for the development of innovative biotechnologies.}, language = {en} } @article{WerkhausenAlbrachtCroninetal.2018, author = {Werkhausen, Amelie and Albracht, Kirsten and Cronin, Neil J and Paulsen, G{\o}ran and Bojsen-M{\o}ller, Jens and Seynnes, Olivier R}, title = {Effect of training-induced changes in achilles tendon stiffness on muscle-tendon behavior during landing}, series = {Frontiers in physiology}, journal = {Frontiers in physiology}, number = {9}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00794}, pages = {11 Seiten}, year = {2018}, abstract = {During rapid deceleration of the body, tendons buffer part of the elongation of the muscle-tendon unit (MTU), enabling safe energy dissipation via eccentric muscle contraction. Yet, the influence of changes in tendon stiffness within the physiological range upon these lengthening contractions is unknown. This study aimed to examine the effect of training-induced stiffening of the Achilles tendon on triceps surae muscle-tendon behavior during a landing task. Twenty-one male subjects were assigned to either a 10-week resistance-training program consisting of single-leg isometric plantarflexion (n = 11) or to a non-training control group (n = 10). Before and after the training period, plantarflexion force, peak Achilles tendon strain and stiffness were measured during isometric contractions, using a combination of dynamometry, ultrasound and kinematics data. Additionally, testing included a step-landing task, during which joint mechanics and lengths of gastrocnemius and soleus fascicles, Achilles tendon, and MTU were determined using synchronized ultrasound, kinematics and kinetics data collection. After training, plantarflexion strength and Achilles tendon stiffness increased (15 and 18\%, respectively), and tendon strain during landing remained similar. Likewise, lengthening and negative work produced by the gastrocnemius MTU did not change detectably. However, in the training group, gastrocnemius fascicle length was offset (8\%) to a longer length at touch down and, surprisingly, fascicle lengthening and velocity were reduced by 27 and 21\%, respectively. These changes were not observed for soleus fascicles when accounting for variation in task execution between tests. These results indicate that a training-induced increase in tendon stiffness does not noticeably affect the buffering action of the tendon when the MTU is rapidly stretched. Reductions in gastrocnemius fascicle lengthening and lengthening velocity during landing occurred independently from tendon strain. Future studies are required to provide insight into the mechanisms underpinning these observations and their influence on energy dissipation.}, language = {en} } @article{YangKriechbaumerAlbrachtetal.2014, author = {Yang, Peng-Fei and Kriechbaumer, Andreas and Albracht, Kirsten and Sanno, Maximilian and Ganse, Bergita and Koy, Timmo and Shang, Peng and br{\"u}ggemann, Gert-Peter and M{\"u}ller, Lars Peter and Rittweger, J{\"o}rn}, title = {A novel optical approach for assessing in vivo bone segment deformation and its application in muscle-bone relationship studies in humans}, series = {Journal of Orthopaedic Translation}, volume = {2}, journal = {Journal of Orthopaedic Translation}, number = {4}, publisher = {Elsevier}, address = {Singapore}, issn = {2214-0328}, doi = {10.1016/j.jot.2014.07.078}, pages = {238 -- 238}, year = {2014}, language = {en} } @article{vonHaefenKrautwaldStolleetal.2022, author = {von H{\"a}fen, Hajo and Krautwald, Clemens and Stolle, Jacob and Bung, Daniel Bernhard and Goseberg, Nils}, title = {Overland flow of broken solitary waves over a two-dimensional coastal plane}, series = {Coastal Engineering}, volume = {175}, journal = {Coastal Engineering}, number = {August}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1872-7379}, doi = {10.1016/j.coastaleng.2022.104125}, pages = {14 Seiten}, year = {2022}, abstract = {Landslides, rock falls or related subaerial and subaqueous mass slides can generate devastating impulse waves in adjacent waterbodies. Such waves can occur in lakes and fjords, or due to glacier calving in bays or at steep ocean coastlines. Infrastructure and residential houses along coastlines of those waterbodies are often situated on low elevation terrain, and are potentially at risk from inundation. Impulse waves, running up a uniform slope and generating an overland flow over an initially dry adjacent horizontal plane, represent a frequently found scenario, which needs to be better understood for disaster planning and mitigation. This study presents a novel set of large-scale flume test focusing on solitary waves propagating over a 1:14.5 slope and breaking onto a horizontal section. Examining the characteristics of overland flow, this study gives, for the first time, insight into the fundamental process of overland flow of a broken solitary wave: its shape and celerity, as well as its momentum when wave breaking has taken place beforehand.}, language = {en} } @article{MarinkovicButenweg2022, author = {Marinkovic, Marko and Butenweg, Christoph}, title = {Numerical analysis of the in-plane behaviour of decoupled masonry infilled RC frames}, series = {Engineering Structures}, volume = {272}, journal = {Engineering Structures}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0141-0296}, doi = {10.1016/j.engstruct.2022.114959}, pages = {18 Seiten}, year = {2022}, abstract = {Damage of reinforced concrete (RC) frames with masonry infill walls has been observed after many earthquakes. Brittle behaviour of the masonry infills in combination with the ductile behaviour of the RC frames makes infill walls prone to damage during earthquakes. Interstory deformations lead to an interaction between the infill and the RC frame, which affects the structural response. The result of this interaction is significant damage to the infill wall and sometimes to the surrounding structural system too. In most design codes, infill walls are considered as non-structural elements and neglected in the design process, because taking into account the infills and considering the interaction between frame and infill in software packages can be complicated and impractical. A good way to avoid negative aspects arising from this behavior is to ensure no or low-interaction of the frame and infill wall, for instance by decoupling the infill from the frame. This paper presents the numerical study performed to investigate new connection system called INODIS (Innovative Decoupled Infill System) for decoupling infill walls from surrounding frame with the aim to postpone infill activation to high interstory drifts thus reducing infill/frame interaction and minimizing damage to both infills and frames. The experimental results are first used for calibration and validation of the numerical model, which is then employed for investigating the influence of the material parameters as well as infill's and frame's geometry on the in-plane behaviour of the infilled frames with the INODIS system. For all the investigated situations, simulation results show significant improvements in behaviour for decoupled infilled RC frames in comparison to the traditionally infilled frames.}, language = {en} } @article{GiresiniSassuButenwegetal.2017, author = {Giresini, Linda and Sassu, Mauro and Butenweg, Christoph and Alecci, Valerio and De Stefano, Mario}, title = {Vault macro-element with equivalent trusses in global seismic analyses}, series = {Earthquakes and Structures}, volume = {12}, journal = {Earthquakes and Structures}, number = {4}, publisher = {Techno-Press}, address = {Taejŏn}, issn = {2092-7614 (Print)}, doi = {10.12989/eas.2017.12.4.409}, pages = {409 -- 423}, year = {2017}, abstract = {This paper proposes a quick and simplified method to describe masonry vaults in global seismic analyses of buildings. An equivalent macro-element constituted by a set of six trusses, two for each transverse, longitudinal and diagonal direction, is introduced. The equivalent trusses, whose stiffness is calculated by fully modeled vaults of different geometry, mechanical properties and boundary conditions, simulate the vault in both global analysis and local analysis, such as kinematic or rocking approaches. A parametric study was carried out to investigate the influence of geometrical characteristics and mechanical features on the equivalent stiffness values. The method was numerically validated by performing modal and transient analysis on a three naves-church in the elastic range. Vibration modes and displacement time-histories were compared showing satisfying agreement between the complete and the simplified models. This procedure is particularly useful in engineering practice because it allows to assess, in a simplified way, the effectiveness of strengthening interventions for reducing horizontal relative displacements between vault supports.}, language = {en} } @article{BeckerFrauenrathHezeletal.2010, author = {Becker, Meike and Frauenrath, Tobias and Hezel, Fabian and Krombach, Gabriele A. and Kremer, Ute and Koppers, Benedikt and Butenweg, Christoph and Goemmel, Andreas and Utting, Jane F. and Schulz-Menger, Jeanette and Niendorf, Thoralf}, title = {Comparison of left ventricular function assessment using phonocardiogram- and electrocardiogram-triggered 2D SSFP CINE MR imaging at 1.5 T and 3.0 T}, series = {European Radiology}, volume = {20}, journal = {European Radiology}, publisher = {Springer}, address = {Berlin}, issn = {1432-1084 (Onlineausgabe)}, doi = {10.1007/s00330-009-1676-z}, pages = {1344 -- 1355}, year = {2010}, abstract = {Objective: As high-field cardiac MRI (CMR) becomes more widespread the propensity of ECG to interference from electromagnetic fields (EMF) and to magneto-hydrodynamic (MHD) effects increases and with it the motivation for a CMR triggering alternative. This study explores the suitability of acoustic cardiac triggering (ACT) for left ventricular (LV) function assessment in healthy subjects (n=14). Methods: Quantitative analysis of 2D CINE steady-state free precession (SSFP) images was conducted to compare ACT's performance with vector ECG (VCG). Endocardial border sharpness (EBS) was examined paralleled by quantitative LV function assessment. Results: Unlike VCG, ACT provided signal traces free of interference from EMF or MHD effects. In the case of correct Rwave recognition, VCG-triggered 2D CINE SSFP was immune to cardiac motion effects—even at 3.0 T. However, VCG-triggered 2D SSFP CINE imaging was prone to cardiac motion and EBS degradation if R-wave misregistration occurred. ACT-triggered acquisitions yielded LV parameters (end-diastolic volume (EDV), endsystolic volume (ESV), stroke volume (SV), ejection fraction (EF) and left ventricular mass (LVM)) comparable with those derived fromVCG-triggered acquisitions (1.5 T: ESVVCG=(56± 17) ml, EDVVCG=(151±32)ml, LVMVCG=(97±27) g, SVVCG=(94± 19)ml, EFVCG=(63±5)\% cf. ESVACT= (56±18) ml, EDVACT=(147±36) ml, LVMACT=(102±29) g, SVACT=(91± 22) ml, EFACT=(62±6)\%; 3.0 T: ESVVCG=(55±21) ml, EDVVCG=(151±32) ml, LVMVCG=(101±27) g, SVVCG=(96±15) ml, EFVCG=(65±7)\% cf. ESVACT=(54±20) ml, EDVACT=(146±35) ml, LVMACT= (101±30) g, SVACT=(92±17) ml, EFACT=(64±6)\%). Conclusions: ACT's intrinsic insensitivity to interference from electromagnetic fields renders}, language = {en} } @article{FrauenrathHezelHeinrichsetal.2009, author = {Frauenrath, Tobias and Hezel, Fabian and Heinrichs, Uwe and Kozerke, Sebastian and Utting, Jane and Kob, Malte and Butenweg, Christoph and Boesiger, Peter and Niendorf, Thoralf}, title = {Feasibility of Cardiac Gating Free of Interference With Electro-Magnetic Fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla Using an MR-Stethoscope}, series = {Investigative Radiology}, volume = {44}, journal = {Investigative Radiology}, number = {9}, publisher = {Lippincott Williams \& Wilkins ; (via Ovid)}, address = {Philadelphia, Pa}, issn = {1536-0210 (online)}, doi = {10.1097/RLI.0b013e3181b4c15e}, pages = {539 -- 547}, year = {2009}, language = {en} } @article{HafidiElHatkaSchmitzetal.2024, author = {Hafidi, Youssef and El Hatka, Hicham and Schmitz, Dominik and Krauss, Manuel and Pettrak, J{\"u}rgen and Biel, Markus and Ittobane, Najim}, title = {Sustainable soil additives for water and micronutrient supply: swelling and chelating properties of polyaspartic acid hydrogels utilizing newly developed crosslinkers}, series = {Gels}, volume = {10}, journal = {Gels}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2310-2861}, doi = {10.3390/gels10030170}, pages = {Artikel 170}, year = {2024}, abstract = {Drought and water shortage are serious problems in many arid and semi-arid regions. This problem is getting worse and even continues in temperate climatic regions due to climate change. To address this problem, the use of biodegradable hydrogels is increasingly important for the application as water-retaining additives in soil. Furthermore, efficient (micro-)nutrient supply can be provided by the use of tailored hydrogels. Biodegradable polyaspartic acid (PASP) hydrogels with different available (1,6-hexamethylene diamine (HMD) and L-lysine (LYS)) and newly developed crosslinkers based on diesters of glycine (GLY) and (di-)ethylene glycol (DEG and EG, respectively) were synthesized and characterized using Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) and regarding their swelling properties (kinetic, absorbency under load (AUL)) as well as biodegradability of PASP hydrogel. Copper (II) and zinc (II), respectively, were loaded as micronutrients in two different approaches: in situ with crosslinking and subsequent loading of prepared hydrogels. The results showed successful syntheses of di-glycine-ester-based crosslinkers. Hydrogels with good water-absorbing properties were formed. Moreover, the developed crosslinking agents in combination with the specific reaction conditions resulted in higher water absorbency with increased crosslinker content used in synthesis (10\% vs. 20\%). The prepared hydrogels are candidates for water-storing soil additives due to the biodegradability of PASP, which is shown in an exemple. The incorporation of Cu(II) and Zn(II) ions can provide these micronutrients for plant growth.}, language = {en} } @article{YoshinobuMiyamotoWagneretal.2024, author = {Yoshinobu, Tatsuo and Miyamoto, Ko-ichiro and Wagner, Torsten and Sch{\"o}ning, Michael Josef}, title = {Field-effect sensors combined with the scanned light pulse technique: from artificial olfactory images to chemical imaging technologies}, series = {Chemosensors}, volume = {12}, journal = {Chemosensors}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2227-9040}, doi = {10.3390/chemosensors12020020}, pages = {Artikel 20}, year = {2024}, abstract = {The artificial olfactory image was proposed by Lundstr{\"o}m et al. in 1991 as a new strategy for an electronic nose system which generated a two-dimensional mapping to be interpreted as a fingerprint of the detected gas species. The potential distribution generated by the catalytic metals integrated into a semiconductor field-effect structure was read as a photocurrent signal generated by scanning light pulses. The impact of the proposed technology spread beyond gas sensing, inspiring the development of various imaging modalities based on the light addressing of field-effect structures to obtain spatial maps of pH distribution, ions, molecules, and impedance, and these modalities have been applied in both biological and non-biological systems. These light-addressing technologies have been further developed to realize the position control of a faradaic current on the electrode surface for localized electrochemical reactions and amperometric measurements, as well as the actuation of liquids in microfluidic devices.}, language = {en} } @article{BertzSchoeningMolinnusetal.2024, author = {Bertz, Morten and Sch{\"o}ning, Michael Josef and Molinnus, Denise and Homma, Takayuki}, title = {Influence of temperature, light, and H₂O₂ concentration on microbial spore inactivation: in-situ Raman spectroscopy combined with optical trapping}, series = {Physica status solidi (a) applications and materials science}, journal = {Physica status solidi (a) applications and materials science}, number = {Early View}, publisher = {Wiley-VCH}, address = {Berlin}, issn = {1862-6319 (Online)}, doi = {10.1002/pssa.202300866}, pages = {8 Seiten}, year = {2024}, abstract = {To gain insight on chemical sterilization processes, the influence of temperature (up to 70 °C), intense green light, and hydrogen peroxide (H₂O₂) concentration (up to 30\% in aqueous solution) on microbial spore inactivation is evaluated by in-situ Raman spectroscopy with an optical trap. Bacillus atrophaeus is utilized as a model organism. Individual spores are isolated and their chemical makeup is monitored under dynamically changing conditions (temperature, light, and H₂O₂ concentration) to mimic industrially relevant process parameters for sterilization in the field of aseptic food processing. While isolated spores in water are highly stable, even at elevated temperatures of 70 °C, exposure to H₂O₂ leads to a loss of spore integrity characterized by the release of the key spore biomarker dipicolinic acid (DPA) in a concentration-dependent manner, which indicates damage to the inner membrane of the spore. Intensive light or heat, both of which accelerate the decomposition of H₂O₂ into reactive oxygen species (ROS), drastically shorten the spore lifetime, suggesting the formation of ROS as a rate-limiting step during sterilization. It is concluded that Raman spectroscopy can deliver mechanistic insight into the mode of action of H₂O₂-based sterilization and reveal the individual contributions of different sterilization methods acting in tandem.}, language = {en} } @article{PogorelovaRogachevAkimbekovetal.2024, author = {Pogorelova, Natalia and Rogachev, Evgeniy and Akimbekov, Nuraly S. and Digel, Ilya}, title = {Effect of dehydration method on the micro- and nanomorphological properties of bacterial cellulose produced by Medusomyces gisevii on different substrates}, series = {Journal of materials science}, volume = {2024}, journal = {Journal of materials science}, publisher = {Springer Science + Business Media}, address = {Dordrecht}, issn = {1573-4803 (Online)}, doi = {10.1007/s10853-024-09596-3}, pages = {13 Seiten}, year = {2024}, abstract = {Many important properties of bacterial cellulose (BC), such as moisture absorption capacity, elasticity and tensile strength, largely depend on its structure. This paper presents a study on the effect of the drying method on BC films produced by Medusomyces gisevii using two different procedures: room temperature drying (RT, (24 ± 2 °C, humidity 65 ± 1\%, dried until a constant weight was reached) and freeze-drying (FD, treated at - 75 °C for 48 h). BC was synthesized using one of two different carbon sources—either glucose or sucrose. Structural differences in the obtained BC films were evaluated using atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction. Macroscopically, the RT samples appeared semi-transparent and smooth, whereas the FD group exhibited an opaque white color and sponge-like structure. SEM examination showed denser packing of fibrils in FD samples while RT-samples displayed smaller average fiber diameter, lower surface roughness and less porosity. AFM confirmed the SEM observations and showed that the FD material exhibited a more branched structure and a higher surface roughness. The samples cultivated in a glucose-containing nutrient medium, generally displayed a straight and ordered shape of fibrils compared to the sucrose-derived BC, characterized by a rougher and wavier structure. The BC films dried under different conditions showed distinctly different crystallinity degrees, whereas the carbon source in the culture medium was found to have a relatively small effect on the BC crystallinity.}, language = {en} } @article{HoffstadtNikolauszKrafftetal.2024, author = {Hoffstadt, Kevin and Nikolausz, Marcell and Krafft, Simone and Bonatelli, Maria and Kumar, Vivekanantha and Harms, Hauke and Kuperjans, Isabel}, title = {Optimization of the ex situ biomethanation of hydrogen and carbon dioxide in a novel meandering plug flow reactor: start-up phase and flexible operation}, series = {Bioengineering}, volume = {11}, journal = {Bioengineering}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2306-5354}, doi = {10.3390/bioengineering11020165}, pages = {18 Seiten}, year = {2024}, language = {en} } @article{KarschuckPoghossianSeretal.2024, author = {Karschuck, Tobias and Poghossian, Arshak and Ser, Joey and Tsokolakyan, Astghik and Achtsnicht, Stefan and Wagner, Patrick and Sch{\"o}ning, Michael Josef}, title = {Capacitive model of enzyme-modified field-effect biosensors: Impact of enzyme coverage}, series = {Sensors and Actuators B: Chemical}, volume = {408}, journal = {Sensors and Actuators B: Chemical}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0925-4005 (Print)}, doi = {10.1016/j.snb.2024.135530}, pages = {12 Seiten}, year = {2024}, abstract = {Electrolyte-insulator-semiconductor capacitors (EISCAP) belong to field-effect sensors having an attractive transducer architecture for constructing various biochemical sensors. In this study, a capacitive model of enzyme-modified EISCAPs has been developed and the impact of the surface coverage of immobilized enzymes on its capacitance-voltage and constant-capacitance characteristics was studied theoretically and experimentally. The used multicell arrangement enables a multiplexed electrochemical characterization of up to sixteen EISCAPs. Different enzyme coverages have been achieved by means of parallel electrical connection of bare and enzyme-covered single EISCAPs in diverse combinations. As predicted by the model, with increasing the enzyme coverage, both the shift of capacitance-voltage curves and the amplitude of the constant-capacitance signal increase, resulting in an enhancement of analyte sensitivity of the EISCAP biosensor. In addition, the capability of the multicell arrangement with multi-enzyme covered EISCAPs for sequentially detecting multianalytes (penicillin and urea) utilizing the enzymes penicillinase and urease has been experimentally demonstrated and discussed.}, language = {en} } @article{BaumgartnerFidlerWethetal.2008, author = {Baumgartner, Werner and Fidler, Florian and Weth, Agnes and Habbecke, Martin and Jakob, Peter and Butenweg, Christoph and B{\"o}hme, Wolfgang}, title = {Investigating the locomotion of the sandfish in desert sand using NMR-Imaging}, series = {PLOS ONE}, volume = {3}, journal = {PLOS ONE}, number = {10}, publisher = {Plos}, address = {San Francisco, California, US}, issn = {1932-6203}, doi = {10.1371/journal.pone.0003309}, pages = {e3309}, year = {2008}, abstract = {The sandfish (Scincus scincus) is a lizard having the remarkable ability to move through desert sand for significant distances. It is well adapted to living in loose sand by virtue of a combination of morphological and behavioural specializations. We investigated the bodyform of the sandfish using 3D-laserscanning and explored its locomotion in loose desert sand using fast nuclear magnetic resonance (NMR) imaging. The sandfish exhibits an in-plane meandering motion with a frequency of about 3 Hz and an amplitude of about half its body length accompanied by swimming-like (or trotting) movements of its limbs. No torsion of the body was observed, a movement required for a digging-behaviour. Simple calculations based on the Janssen model for granular material related to our findings on bodyform and locomotor behaviour render a local decompaction of the sand surrounding the moving sandfish very likely. Thus the sand locally behaves as a viscous fluid and not as a solid material. In this fluidised sand the sandfish is able to "swim" using its limbs.}, language = {en} } @article{SchoenrockMuckeltHastermannetal.2024, author = {Schoenrock, Britt and Muckelt, Paul E. and Hastermann, Maria and Albracht, Kirsten and MacGregor, Robert and Martin, David and Gunga, Hans-Christian and Salanova, Michele and Stokes, Maria J. and Warner, Martin B. and Blottner, Dieter}, title = {Muscle stiffness indicating mission crew health in space}, series = {Scientific Reports}, volume = {14}, journal = {Scientific Reports}, number = {Article number: 4196}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-024-54759-6}, pages = {13 Seiten}, year = {2024}, abstract = {Muscle function is compromised by gravitational unloading in space affecting overall musculoskeletal health. Astronauts perform daily exercise programmes to mitigate these effects but knowing which muscles to target would optimise effectiveness. Accurate inflight assessment to inform exercise programmes is critical due to lack of technologies suitable for spaceflight. Changes in mechanical properties indicate muscle health status and can be measured rapidly and non-invasively using novel technology. A hand-held MyotonPRO device enabled monitoring of muscle health for the first time in spaceflight (> 180 days). Greater/maintained stiffness indicated countermeasures were effective. Tissue stiffness was preserved in the majority of muscles (neck, shoulder, back, thigh) but Tibialis Anterior (foot lever muscle) stiffness decreased inflight vs. preflight (p < 0.0001; mean difference 149 N/m) in all 12 crewmembers. The calf muscles showed opposing effects, Gastrocnemius increasing in stiffness Soleus decreasing. Selective stiffness decrements indicate lack of preservation despite daily inflight countermeasures. This calls for more targeted exercises for lower leg muscles with vital roles as ankle joint stabilizers and in gait. Muscle stiffness is a digital biomarker for risk monitoring during future planetary explorations (Moon, Mars), for healthcare management in challenging environments or clinical disorders in people on Earth, to enable effective tailored exercise programmes.}, language = {en} } @article{KahmannRauschPluemeretal.2022, author = {Kahmann, Stephanie L. and Rausch, Valentin and Pl{\"u}mer, Jonathan and M{\"u}ller, Lars P. and Pieper, Martin and Wegmann, Kilian}, title = {The automized fracture edge detection and generation of three-dimensional fracture probability heat maps}, series = {Medical Engineering \& Physics}, volume = {2022}, journal = {Medical Engineering \& Physics}, number = {110}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1350-4533}, pages = {7 Seiten}, year = {2022}, abstract = {With proven impact of statistical fracture analysis on fracture classifications, it is desirable to minimize the manual work and to maximize repeatability of this approach. We address this with an algorithm that reduces the manual effort to segmentation, fragment identification and reduction. The fracture edge detection and heat map generation are performed automatically. With the same input, the algorithm always delivers the same output. The tool transforms one intact template consecutively onto each fractured specimen by linear least square optimization, detects the fragment edges in the template and then superimposes them to generate a fracture probability heat map. We hypothesized that the algorithm runs faster than the manual evaluation and with low (< 5 mm) deviation. We tested the hypothesis in 10 fractured proximal humeri and found that it performs with good accuracy (2.5 mm ± 2.4 mm averaged Euclidean distance) and speed (23 times faster). When applied to a distal humerus, a tibia plateau, and a scaphoid fracture, the run times were low (1-2 min), and the detected edges correct by visual judgement. In the geometrically complex acetabulum, at a run time of 78 min some outliers were considered acceptable. An automatically generated fracture probability heat map based on 50 proximal humerus fractures matches the areas of high risk of fracture reported in medical literature. Such automation of the fracture analysis method is advantageous and could be extended to reduce the manual effort even further.}, language = {en} } @article{EngelmannSimsekShalabyetal.2024, author = {Engelmann, Ulrich M. and Simsek, Beril and Shalaby, Ahmed and Krause, Hans-Joachim}, title = {Key contributors to signal generation in frequency mixing magnetic detection (FMMD): an in silico study}, series = {Sensors}, volume = {24}, journal = {Sensors}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {1424-8220}, doi = {10.3390/s24061945}, pages = {Artikel 1945}, year = {2024}, abstract = {Frequency mixing magnetic detection (FMMD) is a sensitive and selective technique to detect magnetic nanoparticles (MNPs) serving as probes for binding biological targets. Its principle relies on the nonlinear magnetic relaxation dynamics of a particle ensemble interacting with a dual frequency external magnetic field. In order to increase its sensitivity, lower its limit of detection and overall improve its applicability in biosensing, matching combinations of external field parameters and internal particle properties are being sought to advance FMMD. In this study, we systematically probe the aforementioned interaction with coupled N{\´e}el-Brownian dynamic relaxation simulations to examine how key MNP properties as well as applied field parameters affect the frequency mixing signal generation. It is found that the core size of MNPs dominates their nonlinear magnetic response, with the strongest contributions from the largest particles. The drive field amplitude dominates the shape of the field-dependent response, whereas effective anisotropy and hydrodynamic size of the particles only weakly influence the signal generation in FMMD. For tailoring the MNP properties and parameters of the setup towards optimal FMMD signal generation, our findings suggest choosing large particles of core sizes dc > 25 nm nm with narrow size distributions (σ < 0.1) to minimize the required drive field amplitude. This allows potential improvements of FMMD as a stand-alone application, as well as advances in magnetic particle imaging, hyperthermia and magnetic immunoassays.}, language = {en} } @article{ZhenLiangStaatetal.2024, author = {Zhen, Manghao and Liang, Yunpei and Staat, Manfred and Li, Quanqui and Li, Jianbo}, title = {Discontinuous fracture behaviors and constitutive model of sandstone specimens containing non-parallel prefabricated fissures under uniaxial compression}, series = {Theoretical and Applied Fracture Mechanics}, volume = {131}, journal = {Theoretical and Applied Fracture Mechanics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8442}, doi = {10.1016/j.tafmec.2024.104373}, pages = {Artikel 104373}, year = {2024}, abstract = {The deformation and damage laws of non-homogeneous irregular structural planes in rocks are the basis for studying the stability of rock engineering. To investigate the damage characteristics of rock containing non-parallel fissures, uniaxial compression tests and numerical simulations were conducted on sandstone specimens containing three non-parallel fissures inclined at 0°, 45° and 90° in this study. The characteristics of crack initiation and crack evolution of fissures with different inclinations were analyzed. A constitutive model for the discontinuous fractures of fissured sandstone was proposed. The results show that the fracture behaviors of fissured sandstone specimens are discontinuous. The stress-strain curves are non-smooth and can be divided into nonlinear crack closure stage, linear elastic stage, plastic stage and brittle failure stage, of which the plastic stage contains discontinuous stress drops. During the uniaxial compression test, the middle or ends of 0° fissures were the first to crack compared to 45° and 90° fissures. The end with small distance between 0° and 45° fissures cracked first, and the end with large distance cracked later. After the final failure, 0° fissures in all specimens were fractured, while 45° and 90° fissures were not necessarily fractured. Numerical simulation results show that the concentration of compressive stress at the tips of 0°, 45° and 90° fissures, as well as the concentration of tensile stress on both sides, decreased with the increase of the inclination angle. A constitutive model for the discontinuous fractures of fissured sandstone specimens was derived by combining the logistic model and damage mechanic theory. This model can well describe the discontinuous drops of stress and agrees well with the whole processes of the stress-strain curves of the fissured sandstone specimens.}, language = {en} } @article{SchwagerFleschSchwarzboezletal.2022, author = {Schwager, Christian and Flesch, Robert and Schwarzb{\"o}zl, Peter and Herrmann, Ulf and Teixeira Boura, Cristiano Jos{\´e}}, title = {Advanced two phase flow model for transient molten salt receiver system simulation}, series = {Solar Energy}, volume = {232}, journal = {Solar Energy}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0038-092X (print)}, doi = {10.1016/j.solener.2021.12.065}, pages = {362 -- 375}, year = {2022}, abstract = {In order to realistically predict and optimize the actual performance of a concentrating solar power (CSP) plant sophisticated simulation models and methods are required. This paper presents a detailed dynamic simulation model for a Molten Salt Solar Tower (MST) system, which is capable of simulating transient operation including detailed startup and shutdown procedures including drainage and refill. For appropriate representation of the transient behavior of the receiver as well as replication of local bulk and surface temperatures a discretized receiver model based on a novel homogeneous two-phase (2P) flow modelling approach is implemented in Modelica Dymola®. This allows for reasonable representation of the very different hydraulic and thermal properties of molten salt versus air as well as the transition between both. This dynamic 2P receiver model is embedded in a comprehensive one-dimensional model of a commercial scale MST system and coupled with a transient receiver flux density distribution from raytracing based heliostat field simulation. This enables for detailed process prediction with reasonable computational effort, while providing data such as local salt film and wall temperatures, realistic control behavior as well as net performance of the overall system. Besides a model description, this paper presents some results of a validation as well as the simulation of a complete startup procedure. Finally, a study on numerical simulation performance and grid dependencies is presented and discussed.}, language = {en} } @article{PieronekKleefeld2024, author = {Pieronek, Lukas and Kleefeld, Andreas}, title = {On trajectories of complex-valued interior transmission eigenvalues}, series = {Inverse problems and imaging : IPI}, volume = {18}, journal = {Inverse problems and imaging : IPI}, number = {2}, publisher = {AIMS}, address = {Springfield, Mo}, issn = {1930-8337 (Print)}, doi = {10.3934/ipi.2023041}, pages = {480 -- 516}, year = {2024}, abstract = {This paper investigates the interior transmission problem for homogeneous media via eigenvalue trajectories parameterized by the magnitude of the refractive index. In the case that the scatterer is the unit disk, we prove that there is a one-to-one correspondence between complex-valued interior transmission eigenvalue trajectories and Dirichlet eigenvalues of the Laplacian which turn out to be exactly the trajectorial limit points as the refractive index tends to infinity. For general simply-connected scatterers in two or three dimensions, a corresponding relation is still open, but further theoretical results and numerical studies indicate a similar connection.}, language = {en} } @article{SchoppRohrbachLangeretal.2024, author = {Schopp, Christoph and Rohrbach, Felix and Langer, Luc and Heuermann, Holger}, title = {Detection of welding wire length by active S11 measurement}, series = {IEEE Transactions on Plasma Science}, journal = {IEEE Transactions on Plasma Science}, number = {Early Access}, publisher = {IEEE}, issn = {0093-3813 (Print)}, doi = {10.1109/TPS.2024.3356659}, pages = {1 -- 6}, year = {2024}, abstract = {A novel method to determine the extruded length of a metallic wire for a directed energy deposition (DED) process using a microwave (MW) plasma jet with a straight-through wire feed is presented. The method is based on the relative comparison of the measured frequency response obtained by the large-signal scattering parameter (Hot-S) technique. In the practical working range, repeatability of less than 6\% for a nonactive plasma and 9\% for the active plasma state is found. Measurements are conducted with a focus on a simple solution to decrease the processing time and reduce the integration time of the process into the existing hardware. It is shown that monitoring a single frequency for magnitude and phase changes is sufficient to achieve good accuracy. A combination of different measurement values to determine the length is possible. The applicability to different diameter of the same material is shown as well as a contact detection of the wire and metallic substrate.}, language = {en} } @article{BoehnischBraunMuscarelloetal.2024, author = {B{\"o}hnisch, Nils and Braun, Carsten and Muscarello, Vincenzo and Marzocca, Pier}, title = {About the wing and whirl flutter of a slender wing-propeller system}, series = {Journal of Aircraft}, journal = {Journal of Aircraft}, publisher = {AIAA}, address = {Reston, Va.}, issn = {1533-3868}, doi = {10.2514/1.C037542}, pages = {1 -- 14}, year = {2024}, abstract = {Next-generation aircraft designs often incorporate multiple large propellers attached along the wingspan (distributed electric propulsion), leading to highly flexible dynamic systems that can exhibit aeroelastic instabilities. This paper introduces a validated methodology to investigate the aeroelastic instabilities of wing-propeller systems and to understand the dynamic mechanism leading to wing and whirl flutter and transition from one to the other. Factors such as nacelle positions along the wing span and chord and its propulsion system mounting stiffness are considered. Additionally, preliminary design guidelines are proposed for flutter-free wing-propeller systems applicable to novel aircraft designs. The study demonstrates how the critical speed of the wing-propeller systems is influenced by the mounting stiffness and propeller position. Weak mounting stiffnesses result in whirl flutter, while hard mounting stiffnesses lead to wing flutter. For the latter, the position of the propeller along the wing span may change the wing mode shapes and thus the flutter mechanism. Propeller positions closer to the wing tip enhance stability, but pusher configurations are more critical due to the mass distribution behind the elastic axis.}, language = {en} } @article{TurdumamatovBeldaHeuermann2024, author = {Turdumamatov, Samat and Belda, Aljoscha and Heuermann, Holger}, title = {Shaping a decoupled atmospheric pressure microwave plasma with antenna structures, Maxwell's equations, and boundary conditions}, series = {IEEE Transactions on Plasma Science}, journal = {IEEE Transactions on Plasma Science}, number = {Early Access}, publisher = {IEEE}, issn = {0093-3813 (Print)}, doi = {10.1109/TPS.2024.3383589}, pages = {1 -- 9}, year = {2024}, abstract = {This article addresses the need for an innovative technique in plasma shaping, utilizing antenna structures, Maxwell's laws, and boundary conditions within a shielded environment. The motivation lies in exploring a novel approach to efficiently generate high-energy density plasma with potential applications across various fields. Implemented in an E01 circular cavity resonator, the proposed method involves the use of an impedance and field matching device with a coaxial connector and a specially optimized monopole antenna. This setup feeds a low-loss cavity resonator, resulting in a high-energy density air plasma with a surface temperature exceeding 3500 o C, achieved with a minimal power input of 80 W. The argon plasma, resembling the shape of a simple monopole antenna with modeled complex dielectric values, offers a more energy-efficient alternative compared to traditional, power-intensive plasma shaping methods. Simulations using a commercial electromagnetic (EM) solver validate the design's effectiveness, while experimental validation underscores the method's feasibility and practical implementation. Analyzing various parameters in an argon atmosphere, including hot S -parameters and plasma beam images, the results demonstrate the successful application of this technique, suggesting its potential in coating, furnace technology, fusion, and spectroscopy applications.}, language = {en} } @article{StiemerThomaBraun2023, author = {Stiemer, Luc Nicolas and Thoma, Andreas and Braun, Carsten}, title = {MBT3D: Deep learning based multi-object tracker for bumblebee 3D flight path estimation}, series = {PLoS ONE}, volume = {18}, journal = {PLoS ONE}, number = {9}, publisher = {PLOS}, address = {San Fancisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0291415}, pages = {e0291415}, year = {2023}, abstract = {This work presents the Multi-Bees-Tracker (MBT3D) algorithm, a Python framework implementing a deep association tracker for Tracking-By-Detection, to address the challenging task of tracking flight paths of bumblebees in a social group. While tracking algorithms for bumblebees exist, they often come with intensive restrictions, such as the need for sufficient lighting, high contrast between the animal and background, absence of occlusion, significant user input, etc. Tracking flight paths of bumblebees in a social group is challenging. They suddenly adjust movements and change their appearance during different wing beat states while exhibiting significant similarities in their individual appearance. The MBT3D tracker, developed in this research, is an adaptation of an existing ant tracking algorithm for bumblebee tracking. It incorporates an offline trained appearance descriptor along with a Kalman Filter for appearance and motion matching. Different detector architectures for upstream detections (You Only Look Once (YOLOv5), Faster Region Proposal Convolutional Neural Network (Faster R-CNN), and RetinaNet) are investigated in a comparative study to optimize performance. The detection models were trained on a dataset containing 11359 labeled bumblebee images. YOLOv5 reaches an Average Precision of AP = 53, 8\%, Faster R-CNN achieves AP = 45, 3\% and RetinaNet AP = 38, 4\% on the bumblebee validation dataset, which consists of 1323 labeled bumblebee images. The tracker's appearance model is trained on 144 samples. The tracker (with Faster R-CNN detections) reaches a Multiple Object Tracking Accuracy MOTA = 93, 5\% and a Multiple Object Tracking Precision MOTP = 75, 6\% on a validation dataset containing 2000 images, competing with state-of-the-art computer vision methods. The framework allows reliable tracking of different bumblebees in the same video stream with rarely occurring identity switches (IDS). MBT3D has much lower IDS than other commonly used algorithms, with one of the lowest false positive rates, competing with state-of-the-art animal tracking algorithms. The developed framework reconstructs the 3-dimensional (3D) flight paths of the bumblebees by triangulation. It also handles and compares two alternative stereo camera pairs if desired.}, language = {en} } @article{BiewendtBlaschkeBoehnert2021, author = {Biewendt, Marcel and Blaschke, Florian and B{\"o}hnert, Arno}, title = {A review of contemporary challenges in business culture}, series = {International Journal of Applied Research in Business and Management}, volume = {2}, journal = {International Journal of Applied Research in Business and Management}, number = {1}, publisher = {Wohllebe \& Ross Publishing}, address = {Hamburg}, issn = {2700-8983}, doi = {10.51137/ijarbm.2021.2.1.1}, pages = {1 -- 12}, year = {2021}, abstract = {The following article deals with the basic principles of intercultural management and possible improvements in terms of cultural, ethnic and gender diversification. The results are exemplarily applied to a bank located in Germany. The aim of this paper is to find out to what extent intercultural management could improve the productivity of Relatos-Bank in dealing with foreign employees or employees with a different cultural background. To achieve this goal, the authors con-duct a literature research. The main sources of information are books, journal articles and internet sources. It becomes clear that especially the different perceptions of different generations have a potential for conflict, which can be counteracted by applying presented scientific models. Equalizing the salaries of female and male employees and equalizing the rights and distribution of power could also be the key to becoming an open-minded, dynamic and fair organization that is pre-pared for the rapidly changing environment in which it operates.}, language = {en} } @article{Biewendt2020, author = {Biewendt, Marcel}, title = {Sustainable development: A quantitative analysis regarding the impact of resource rents on state welfare from 2002 to 2017}, series = {SocioEconomic Challenges}, volume = {4}, journal = {SocioEconomic Challenges}, number = {4}, publisher = {ARMG Publishing}, address = {Sumy}, issn = {2520-6214}, doi = {10.21272/sec.4(4).119-131.2020}, pages = {119 -- 131}, year = {2020}, abstract = {This paper uses a quantitative analysis to examine the interdependence and impact of resource rents on socio-economic development from 2002 to 2017. Nigeria and Norway have been chosen as reference countries due to their abundance of natural resources by similar economic performance, while the ranking in the Human Development Index differs dramatically. As the Human Development Index provides insight into a country's cultural and socio-economic characteristics and development in addition to economic indicators, it allows a comparison of the two countries. The hypothesis presented and discussed in this paper was researched before. A qualitative research approach was used in the author's master's thesis "The Human Development Index (HDI) as a Reflection of Resource Abundance (using Nigeria and Norway as a case study)" in 2018. The management of scarce resources is an important aspect in the development of modern countries and those on the threshold of becoming industrialised nations. The effects of a mistaken resource management are not only of a purely economic nature but also of a social and socio-economic nature. In order to present a partial aspect of these dependencies and influences this paper uses a quantitative analysis to examine the interdependence and impact of resource rents on socio-economic development from 2002 to 2017. Nigeria and Norway have been chosen as reference countries due to their abundance of natural resources by similar economic performance, while the ranking in the Human Development Index differs significantly. As the Human Development Index provides insight into a country's cultural and socio-economic characteristics and development in addition to economic indicators, it allows a comparison of the two countries. This paper found out in a holistic perspective that (not or poorly managed) resource wealth in itself has a negative impact on socio-economic development and significantly reduces the productivity of the citizens of a state. This is expressed in particular for the years 2002 till 2017 in a negative correlation of GDP per capita and HDI value with the share respectively the size of resources in the GDP of a country.}, language = {en} } @article{BoehnertBlaschkeBiewendt2023, author = {B{\"o}hnert, Arno and Blaschke, Florian and Biewendt, Marcel}, title = {Impact of sustainability on the strategic direction of luxury companies}, series = {European Journal of Marketing and Economics}, volume = {6}, journal = {European Journal of Marketing and Economics}, number = {1}, publisher = {Revistia}, address = {London}, issn = {2601-8659}, pages = {70 -- 85}, year = {2023}, abstract = {Today's society is undergoing a paradigm shift driven by the megatrend of sustainability. This undeniably affects all areas of Western life. This paper aims to find out how the luxury industry is dealing with this change and what adjustments are made by the companies. For this purpose, interviews were conducted with managers from the luxury industry, in which they were asked about specific measures taken by their companies as well as trends in the industry. In a subsequent evaluation, the trends in the luxury industry were summarized for the areas of ecological, social, and economic sustainability. It was found that the area of environmental sustainability is significantly more focused than the other sub-areas. Furthermore, the need for a customer survey to validate the industry-based measures was identified.}, language = {en} } @article{BiewendtBlaschkeBoehnert2021, author = {Biewendt, Marcel and Blaschke, Florian and B{\"o}hnert, Arno}, title = {Motivational factors in organisational change}, series = {SocioEconomic Challenges}, volume = {5}, journal = {SocioEconomic Challenges}, number = {3}, publisher = {ARMG}, address = {Sumy}, issn = {2520-6214}, doi = {10.21272/sec.5(3).15-27.2021}, pages = {15 -- 27}, year = {2021}, abstract = {The presented paper gives an overview of the most important and most common theories and concepts from the economic field of organisational change and is also enriched with quantitative publication data, which underlines the relevance of the topic. In particular, the topic presented is interwoven in an interdisciplinary way with economic psychological models, which are underpinned within the models with content from leading scholars in the field. The pace of change in companies is accelerating, as is technological change in our society. Adaptations of the corporate structure, but also of management techniques and tasks, are therefore indispensable. This includes not only the right approaches to employee motivation, but also the correct use of intrinsic and extrinsic motivational factors. Based on the hypothesis put forward by the scientist and researcher Rollinson in his book "Organisational behaviour and analysis" that managers believe motivational resources are available at all times, socio-economic and economic psychological theories are contrasted here in order to critically examine this statement. In addition, a fictitious company was created as a model for this work in order to illustrate the effects of motivational deficits in practice. In this context, the theories presented are applied to concrete problems within the model and conclusions are drawn about their influence and applicability. This led to the conclusion that motivation is a very individual challenge for each employee, which requires adapted and personalised approaches. On the other hand, the recommendations for action for supervisors in the case of motivation deficits also cannot be answered in a blanket manner, but can only be solved with the help of professional, expert-supported processing due to the economic-psychological realities of motivation. Identifying, analysing and remedying individual employee motivation deficits is, according to the authors, a problem and a challenge of great importance, especially in the context of rapidly changing ecosystems in modern companies, as motivation also influences other factors such as individual productivity. The authors therefore conclude that good motivation through the individual and customised promotion and further training of employees is an important point for achieving important corporate goals in order to remain competitive on the one hand and to create a productive and pleasant working environment on the other.}, language = {en} } @article{BlockViebahnJungbluth2024, author = {Block, Simon and Viebahn, Peter and Jungbluth, Christian}, title = {Analysing direct air capture for enabling negative emissions in Germany: an assessment of the resource requirements and costs of a potential rollout in 2045}, series = {Frontiers in Climate}, volume = {6}, journal = {Frontiers in Climate}, publisher = {Frontiers}, address = {Lausanne}, issn = {2624-9553}, doi = {10.3389/fclim.2024.1353939}, pages = {18 Seiten}, year = {2024}, abstract = {Direct air capture (DAC) combined with subsequent storage (DACCS) is discussed as one promising carbon dioxide removal option. The aim of this paper is to analyse and comparatively classify the resource consumption (land use, renewable energy and water) and costs of possible DAC implementation pathways for Germany. The paths are based on a selected, existing climate neutrality scenario that requires the removal of 20 Mt of carbon dioxide (CO2) per year by DACCS from 2045. The analysis focuses on the so-called "low-temperature" DAC process, which might be more advantageous for Germany than the "high-temperature" one. In four case studies, we examine potential sites in northern, central and southern Germany, thereby using the most suitable renewable energies for electricity and heat generation. We show that the deployment of DAC results in large-scale land use and high energy needs. The land use in the range of 167-353 km2 results mainly from the area required for renewable energy generation. The total electrical energy demand of 14.4 TWh per year, of which 46\% is needed to operate heat pumps to supply the heat demand of the DAC process, corresponds to around 1.4\% of Germany's envisaged electricity demand in 2045. 20 Mt of water are provided yearly, corresponding to 40\% of the city of Cologne's water demand (1.1 million inhabitants). The capture of CO2 (DAC) incurs levelised costs of 125-138 EUR per tonne of CO2, whereby the provision of the required energy via photovoltaics in southern Germany represents the lowest value of the four case studies. This does not include the costs associated with balancing its volatility. Taking into account transporting the CO2 via pipeline to the port of Wilhelmshaven, followed by transporting and sequestering the CO2 in geological storage sites in the Norwegian North Sea (DACCS), the levelised costs increase to 161-176 EUR/tCO2. Due to the longer transport distances from southern and central Germany, a northern German site using wind turbines would be the most favourable.}, language = {en} } @article{BiewendtBoehnertBlaschke2020, author = {Biewendt, Marcel and B{\"o}hnert, Arno and Blaschke, Florian}, title = {The repercussions of the digital twin in the automotive industry on the new marketing logic}, series = {European Journal of Marketing and Economics}, volume = {4}, journal = {European Journal of Marketing and Economics}, number = {1}, publisher = {Revistia}, address = {London}, issn = {2601-8659}, doi = {10.26417/229eim64f}, pages = {68 -- 73}, year = {2020}, abstract = {Rapid development of virtual and data acquisition technology makes Digital Twin Technology (DT) one of the fundamental areas of research, while DT is one of the most promissory developments for the achievement of Industry 4.0. 48\% percent of organisations implementing the Internet of Things are already using DT or plan to use DT in 2020. The global market for DT is expected to grow by 38 percent annually, reaching USD16 billion by 2023. In addition, the number of participating organisations using digital twins is expected to triple by 2022. DTs are characterised by the integration between physical and virtual spaces. The driving idea for DT is to develop, test and build our devices in a virtual environment. The objective of this paper is to study the impact of DT in the automotive industry on the new marketing logic. This paper outlines the current challenges and possible directions for the future DT in marketing. This paper will be helpful for managers in the industry to use the advantages and potentials of DT.}, language = {en} } @article{BiewendtBlaschkeBoehnert2020, author = {Biewendt, Marcel and Blaschke, Florian and B{\"o}hnert, Arno}, title = {An evaluation of corporate sustainability in context of the Jevons paradox}, series = {SocioEconomic Challenges}, volume = {4}, journal = {SocioEconomic Challenges}, number = {3}, publisher = {ARMG Publishing}, address = {Sumy}, issn = {2520-6214}, doi = {10.21272/sec.4(3).46-65.2020}, pages = {46 -- 65}, year = {2020}, abstract = {The successful implementation and continuous development of sustainable corporate-level solutions is a challenge. These are endeavours in which social, environmental, and financial aspects must be weighed against each other. They can prove difficult to handle and, in some cases, almost unrealistic. Concepts such as green controlling, IT, and manufacturing look promising and are constantly evolving. This paper aims to achieve a better understanding of the field of corporate sustainability (CS). It will evaluate the hypothesis by which Corporate Sustainability thrives, via being efficient, increasing the performance, and raising the value of the input of the enterprises to the resources used. In fact, Corporate Sustainability on the surface could seem to contradict the idea, which supports the understanding that it encourages the reduction of the heavy reliance on the use of natural resources, the overall environmental impact, and above all, their protection. To understand how the contradictory notion of CS came about, in this part of the paper, the emphasis is placed on providing useful insight to this regard. The first part of this paper summarizes various definitions, organizational theories, and measures used for CS and its derivatives like green controlling, IT, and manufacturing. Second, a case study is given that combines the aforementioned sustainability models. In addition to evaluating the hypothesis, the overarching objective of this paper is to demonstrate the use of green controlling, IT, and manufacturing in the corporate sector. Furthermore, this paper outlines the current challenges and possible directions for CS in the future.}, language = {en} } @article{BiewendtBlaschkeBoehnert2020, author = {Biewendt, Marcel and Blaschke, Florian and B{\"o}hnert, Arno}, title = {The rebound effect - a systematic review of the current state of affairs}, series = {European Journal of Economics and Business Studies}, volume = {6}, journal = {European Journal of Economics and Business Studies}, number = {1}, publisher = {Revistia}, address = {London}, issn = {2601-8659}, doi = {10.26417/134nvy47z}, pages = {106 -- 120}, year = {2020}, abstract = {This publication is intended to present the current state of research on the rebound effect. First, a systematic literature review is carried out to outline (current) scientific models and theories. Research Question 1 follows with a mathematical introduction of the rebound effect, which shows the interdependence of consumer behaviour, technological progress, and interwoven effects for both. Thereupon, the research field is analysed for gaps and limitations by a systematic literature review. To ensure quantitative and qualitative results, a review protocol is used that integrates two different stages and covers all relevant publications released between 2000 and 2019. Accordingly, 392 publications were identified that deal with the rebound effect. These papers were reviewed to obtain relevant information on the two research questions. The literature review shows that research on the rebound effect is not yet comprehensive and focuses mainly on the effect itself rather than solutions to avoid it. Research Question 2 finds that the main gap, and thus the limitations, is that not much research has been published on the actual avoidance of the rebound effect yet. This is a major limitation for practical application by decision-makers and politicians. Therefore, a theoretical analysis was carried out to identify potential theories and ideas to avoid the rebound effect. The most obvious idea to solve this problem is the theory of a Steady-State Economy (SSE), which has been described and reviewed.}, language = {en} } @article{AliaziziOezsoyluBakhshiSichanietal.2024, author = {Aliazizi, Fereshteh and {\"O}zsoylu, Dua and Bakhshi Sichani, Soroush and Khorshid, Mehran and Glorieux, Christ and Robbens, Johan and Sch{\"o}ning, Michael J. and Wagner, Patrick}, title = {Development and Calibration of a Microfluidic, Chip-Based Sensor System for Monitoring the Physical Properties of Water Samples in Aquacultures}, series = {Micromachines}, volume = {15}, journal = {Micromachines}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2072-666X}, doi = {10.3390/mi15060755}, year = {2024}, abstract = {In this work, we present a compact, bifunctional chip-based sensor setup that measures the temperature and electrical conductivity of water samples, including specimens from rivers and channels, aquaculture, and the Atlantic Ocean. For conductivity measurements, we utilize the impedance amplitude recorded via interdigitated electrode structures at a single triggering frequency. The results are well in line with data obtained using a calibrated reference instrument. The new setup holds for conductivity values spanning almost two orders of magnitude (river versus ocean water) without the need for equivalent circuit modelling. Temperature measurements were performed in four-point geometry with an on-chip platinum RTD (resistance temperature detector) in the temperature range between 2 °C and 40 °C, showing no hysteresis effects between warming and cooling cycles. Although the meander was not shielded against the liquid, the temperature calibration provided equivalent results to low conductive Milli-Q and highly conductive ocean water. The sensor is therefore suitable for inline and online monitoring purposes in recirculating aquaculture systems.}, language = {en} } @article{FiedlerOrzadaFloeseretal.2021, author = {Fiedler, Thomas M. and Orzada, Stephan and Fl{\"o}ser, Martina and Rietsch, Stefan H. G. and Quick, Harald H. and Ladd, Mark E. and Bitz, Andreas}, title = {Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T}, series = {NMR in Biomedicine}, volume = {34}, journal = {NMR in Biomedicine}, number = {7}, publisher = {Wiley}, address = {Weinheim}, issn = {0952-3480 (ISSN)}, doi = {10.1002/nbm.4515}, pages = {18 SeitenWiley}, year = {2021}, abstract = {The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit ele- ments. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual obser- vation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the devia- tion from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, espe- cially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homoge- neous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.}, language = {en} } @article{HarrisKleefeld2018, author = {Harris, Isaac and Kleefeld, Andreas}, title = {The inverse scattering problem for a conductive boundary condition and transmission eigenvalues}, series = {Applicable Analysis}, volume = {99}, journal = {Applicable Analysis}, number = {3}, publisher = {Taylor \& Francis}, address = {London}, issn = {1563-504X}, doi = {10.1080/00036811.2018.1504028}, pages = {508 -- 529}, year = {2018}, abstract = {In this paper, we consider the inverse scattering problem associated with an inhomogeneous media with a conductive boundary. In particular, we are interested in two problems that arise from this inverse problem: the inverse conductivity problem and the corresponding interior transmission eigenvalue problem. The inverse conductivity problem is to recover the conductive boundary parameter from the measured scattering data. We prove that the measured scatted data uniquely determine the conductivity parameter as well as describe a direct algorithm to recover the conductivity. The interior transmission eigenvalue problem is an eigenvalue problem associated with the inverse scattering of such materials. We investigate the convergence of the eigenvalues as the conductivity parameter tends to zero as well as prove existence and discreteness for the case of an absorbing media. Lastly, several numerical and analytical results support the theory and we show that the inside-outside duality method can be used to reconstruct the interior conductive eigenvalues.}, language = {en} } @article{KleefeldPieronek2020, author = {Kleefeld, Andreas and Pieronek, J.}, title = {Elastic transmission eigenvalues and their computation via the method of fundamental solutions}, series = {Applicable Analysis}, volume = {100}, journal = {Applicable Analysis}, number = {16}, publisher = {Taylore \& Francis}, address = {London}, issn = {1563-504X}, doi = {10.1080/00036811.2020.1721473}, pages = {3445 -- 3462}, year = {2020}, abstract = {A stabilized version of the fundamental solution method to catch ill-conditioning effects is investigated with focus on the computation of complex-valued elastic interior transmission eigenvalues in two dimensions for homogeneous and isotropic media. Its algorithm can be implemented very shortly and adopts to many similar partial differential equation-based eigenproblems as long as the underlying fundamental solution function can be easily generated. We develop a corroborative approximation analysis which also implicates new basic results for transmission eigenfunctions and present some numerical examples which together prove successful feasibility of our eigenvalue recovery approach.}, language = {en} } @article{BreussKleefeld2020, author = {Breuß, Michael and Kleefeld, Andreas}, title = {Implicit monotone difference methods for scalar conservation laws with source terms}, series = {Acta Mathematica Vietnamica}, volume = {45}, journal = {Acta Mathematica Vietnamica}, publisher = {Springer Singapore}, address = {Singapore}, issn = {2315-4144}, doi = {10.1007/s40306-019-00354-1}, pages = {709 -- 738}, year = {2020}, abstract = {In this article, a concept of implicit methods for scalar conservation laws in one or more spatial dimensions allowing also for source terms of various types is presented. This material is a significant extension of previous work of the first author (Breuß SIAM J. Numer. Anal. 43(3), 970-986 2005). Implicit notions are developed that are centered around a monotonicity criterion. We demonstrate a connection between a numerical scheme and a discrete entropy inequality, which is based on a classical approach by Crandall and Majda. Additionally, three implicit methods are investigated using the developed notions. Next, we conduct a convergence proof which is not based on a classical compactness argument. Finally, the theoretical results are confirmed by various numerical tests.}, language = {en} } @article{AsanteAsamaniKleefeldWade2020, author = {Asante-Asamani, E.O. and Kleefeld, Andreas and Wade, B.A.}, title = {A second-order exponential time differencing scheme for non-linear reaction-diffusion systems with dimensional splitting}, series = {Journal of Computational Physics}, volume = {415}, journal = {Journal of Computational Physics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9991}, doi = {10.1016/j.jcp.2020.109490}, year = {2020}, abstract = {A second-order L-stable exponential time-differencing (ETD) method is developed by combining an ETD scheme with approximating the matrix exponentials by rational functions having real distinct poles (RDP), together with a dimensional splitting integrating factor technique. A variety of non-linear reaction-diffusion equations in two and three dimensions with either Dirichlet, Neumann, or periodic boundary conditions are solved with this scheme and shown to outperform a variety of other second-order implicit-explicit schemes. An additional performance boost is gained through further use of basic parallelization techniques.}, language = {en} } @article{MartinVaqueroKleefeld2020, author = {Mart{\´i}n-Vaquero, J. and Kleefeld, Andreas}, title = {Solving nonlinear parabolic PDEs in several dimensions: Parallelized ESERK codes}, series = {Journal of Computational Physics}, journal = {Journal of Computational Physics}, number = {423}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0021-9991}, doi = {10.1016/j.jcp.2020.109771}, year = {2020}, abstract = {There is a very large number of very important situations which can be modeled with nonlinear parabolic partial differential equations (PDEs) in several dimensions. In general, these PDEs can be solved by discretizing in the spatial variables and transforming them into huge systems of ordinary differential equations (ODEs), which are very stiff. Therefore, standard explicit methods require a large number of iterations to solve stiff problems. But implicit schemes are computationally very expensive when solving huge systems of nonlinear ODEs. Several families of Extrapolated Stabilized Explicit Runge-Kutta schemes (ESERK) with different order of accuracy (3 to 6) are derived and analyzed in this work. They are explicit methods, with stability regions extended, along the negative real semi-axis, quadratically with respect to the number of stages s, hence they can be considered to solve stiff problems much faster than traditional explicit schemes. Additionally, they allow the adaptation of the step length easily with a very small cost. Two new families of ESERK schemes (ESERK3 and ESERK6) are derived, and analyzed, in this work. Each family has more than 50 new schemes, with up to 84.000 stages in the case of ESERK6. For the first time, we also parallelized all these new variable step length and variable number of stages algorithms (ESERK3, ESERK4, ESERK5, and ESERK6). These parallelized strategies allow to decrease times significantly, as it is discussed and also shown numerically in two problems. Thus, the new codes provide very good results compared to other well-known ODE solvers. Finally, a new strategy is proposed to increase the efficiency of these schemes, and it is discussed the idea of combining ESERK families in one code, because typically, stiff problems have different zones and according to them and the requested tolerance the optimum order of convergence is different.}, language = {en} } @article{Kleefeld2021, author = {Kleefeld, Andreas}, title = {The hot spots conjecture can be false: some numerical examples}, series = {Advances in Computational Mathematics}, volume = {47}, journal = {Advances in Computational Mathematics}, publisher = {Springer}, address = {Dordrecht}, issn = {1019-7168}, doi = {10.1007/s10444-021-09911-5}, year = {2021}, abstract = {The hot spots conjecture is only known to be true for special geometries. This paper shows numerically that the hot spots conjecture can fail to be true for easy to construct bounded domains with one hole. The underlying eigenvalue problem for the Laplace equation with Neumann boundary condition is solved with boundary integral equations yielding a non-linear eigenvalue problem. Its discretization via the boundary element collocation method in combination with the algorithm by Beyn yields highly accurate results both for the first non-zero eigenvalue and its corresponding eigenfunction which is due to superconvergence. Additionally, it can be shown numerically that the ratio between the maximal/minimal value inside the domain and its maximal/minimal value on the boundary can be larger than 1 + 10- 3. Finally, numerical examples for easy to construct domains with up to five holes are provided which fail the hot spots conjecture as well.}, language = {en} } @article{KleefeldZimmermann2022, author = {Kleefeld, Andreas and Zimmermann, M.}, title = {Computing Elastic Interior Transmission Eigenvalues}, series = {Integral Methods in Science and Engineering}, journal = {Integral Methods in Science and Engineering}, editor = {Constanda, Christian and Bodmann, Bardo E.J. and Harris, Paul J.}, publisher = {Birkh{\"a}user}, address = {Cham}, isbn = {978-3-031-07171-3}, doi = {10.1007/978-3-031-07171-3_10}, pages = {139 -- 155}, year = {2022}, abstract = {An alternative method is presented to numerically compute interior elastic transmission eigenvalues for various domains in two dimensions. This is achieved by discretizing the resulting system of boundary integral equations in combination with a nonlinear eigenvalue solver. Numerical results are given to show that this new approach can provide better results than the finite element method when dealing with general domains.}, language = {en} } @article{ChwallekNawrathKrastinaetal.2024, author = {Chwallek, Constanze and Nawrath, Lara and Krastina, Anzelika and Bruksle, Ieva}, title = {Supportive research on sustainable entrepreneurship and business practices}, series = {SECA Sustainable Entrepreneurship for Climate Action}, journal = {SECA Sustainable Entrepreneurship for Climate Action}, number = {3}, publisher = {Lapland University of Applied Sciences Ltd}, address = {Rovaniemi}, isbn = {978-952-316-514-4 (pdf)}, issn = {2954-1654 (on-line publication)}, pages = {67 Seiten}, year = {2024}, language = {en} } @article{HarrisKleefeld2022, author = {Harris, Isaac and Kleefeld, Andreas}, title = {Analysis and computation of the transmission eigenvalues with a conductive boundary condition}, series = {Applicable Analysis}, volume = {101}, journal = {Applicable Analysis}, number = {6}, publisher = {Taylor \& Francis}, address = {London}, issn = {1563-504X}, doi = {10.1080/00036811.2020.1789598}, pages = {1880 -- 1895}, year = {2022}, abstract = {We provide a new analytical and computational study of the transmission eigenvalues with a conductive boundary condition. These eigenvalues are derived from the scalar inverse scattering problem for an inhomogeneous material with a conductive boundary condition. The goal is to study how these eigenvalues depend on the material parameters in order to estimate the refractive index. The analytical questions we study are: deriving Faber-Krahn type lower bounds, the discreteness and limiting behavior of the transmission eigenvalues as the conductivity tends to infinity for a sign changing contrast. We also provide a numerical study of a new boundary integral equation for computing the eigenvalues. Lastly, using the limiting behavior we will numerically estimate the refractive index from the eigenvalues provided the conductivity is sufficiently large but unknown.}, language = {en} } @article{ClausnitzerKleefeld2024, author = {Clausnitzer, Julian and Kleefeld, Andreas}, title = {A spectral Galerkin exponential Euler time-stepping scheme for parabolic SPDEs on two-dimensional domains with a C² boundary}, series = {Discrete and Continuous Dynamical Systems - Series B}, volume = {29}, journal = {Discrete and Continuous Dynamical Systems - Series B}, number = {4}, publisher = {AIMS}, address = {Springfield}, issn = {1531-3492}, doi = {10.3934/dcdsb.2023148}, pages = {1624 -- 1651}, year = {2024}, abstract = {We consider the numerical approximation of second-order semi-linear parabolic stochastic partial differential equations interpreted in the mild sense which we solve on general two-dimensional domains with a C² boundary with homogeneous Dirichlet boundary conditions. The equations are driven by Gaussian additive noise, and several Lipschitz-like conditions are imposed on the nonlinear function. We discretize in space with a spectral Galerkin method and in time using an explicit Euler-like scheme. For irregular shapes, the necessary Dirichlet eigenvalues and eigenfunctions are obtained from a boundary integral equation method. This yields a nonlinear eigenvalue problem, which is discretized using a boundary element collocation method and is solved with the Beyn contour integral algorithm. We present an error analysis as well as numerical results on an exemplary asymmetric shape, and point out limitations of the approach.}, language = {en} } @article{FrauenrathHezelRenzetal.2010, author = {Frauenrath, Tobias and Hezel, Fabian and Renz, Wolfgang and de Geyer d'Orth, Thibaut and Dieringer, Matthias and von Knobelsdorf-Brenkenhoff, Florian and Prothmann, Marcel and Schulz-Menger, Jeanette and Niendorf, Thoralf}, title = {Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {12}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {1}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1532-429X}, doi = {10.1186/1532-429X-12-67}, year = {2010}, abstract = {Background To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms. Results ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30\% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Δt = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Δt = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms. Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34). Conclusions The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T.}, language = {en} } @article{KobFrauenrath2009, author = {Kob, Malte and Frauenrath, Tobias}, title = {A system for parallel measurement of glottis opening and larynx position}, series = {Biomedical Signal Processing and Control}, volume = {4}, journal = {Biomedical Signal Processing and Control}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1746-8108}, doi = {10.1016/j.bspc.2009.03.004}, pages = {221 -- 228}, year = {2009}, abstract = {The simultaneous assessment of glottal dynamics and larynx position can be beneficial for the diagnosis of disordered voice or speech production and swallowing. Up to now, methods either concentrate on assessment of the glottis opening using optical, acoustical or electrical (electroglottography, EGG) methods, or on visualisation of the larynx position using ultrasound, computer tomography or magnetic resonance imaging techniques. The method presented here makes use of a time-multiplex measurement approach of space-resolved transfer impedances through the larynx. The fast sequence of measurements allows a quasi simultaneous assessment of both larynx position and EGG signal using up to 32 transmit-receive signal paths. The system assesses the dynamic opening status of the glottis as well as the vertical and back/forward motion of the larynx. Two electrode-arrays are used for the measurement of the electrical transfer impedance through the neck in different directions. From the acquired data the global and individual conductivity is calculated as well as a 2D point spatial representation of the minimum impedance. The position information is shown together with classical EGG signals allowing a synchronous visual assessment of glottal area and larynx position. A first application to singing voice analysis is presented that indicate a high potential of the method for use as a non-invasive tool in the diagnosis of voice, speech, and swallowing disorders.}, language = {en} } @article{HeinrichsUttingFrauenrathetal.2009, author = {Heinrichs, Uwe and Utting, Jane F. and Frauenrath, Tobias and Hezel, Fabian and Krombach, Gabriele A. and Hodenius, Michael A. J. and Kozerke, Sebastian and Niendorf, Thoralf}, title = {Myocardial T2 mapping free of distortion using susceptibility-weighted fast spin-echo imaging: A feasibility study at 1.5 T and 3.0 T}, series = {Magnetic Resonance in Medicine}, volume = {62}, journal = {Magnetic Resonance in Medicine}, number = {3}, publisher = {Wiley-Liss}, address = {New York}, issn = {1522-2594}, doi = {10.1002/mrm.22054}, pages = {822 -- 828}, year = {2009}, abstract = {This study demonstrates the feasibility of applying free-breathing, cardiac-gated, susceptibility-weighted fast spin-echo imaging together with black blood preparation and navigator-gated respiratory motion compensation for anatomically accurate T₂ mapping of the heart. First, T₂ maps are presented for oil phantoms without and with respiratory motion emulation (T₂ = (22.1 ± 1.7) ms at 1.5 T and T₂ = (22.65 ± 0.89) ms at 3.0 T). T₂ relaxometry of a ferrofluid revealed relaxivities of R2 = (477.9 ± 17) mM⁻¹s⁻¹ and R2 = (449.6 ± 13) mM⁻¹s⁻¹ for UFLARE and multiecho gradient-echo imaging at 1.5 T. For inferoseptal myocardial regions mean T₂ values of 29.9 ± 6.6 ms (1.5 T) and 22.3 ± 4.8 ms (3.0 T) were estimated. For posterior myocardial areas close to the vena cava T₂-values of 24.0 ± 6.4 ms (1.5 T) and 15.4 ± 1.8 ms (3.0 T) were observed. The merits and limitations of the proposed approach are discussed and its implications for cardiac and vascular T₂-mapping are considered.}, language = {en} } @article{FrauenrathNiendorfKob2008, author = {Frauenrath, Tobias and Niendorf, Thoralf and Kob, Malte}, title = {Acoustic method for synchronization of Magnetic Resonance Imaging (MRI)}, series = {Acta Acustica}, volume = {94}, journal = {Acta Acustica}, number = {1}, publisher = {Hirzel}, address = {Stuttgart}, issn = {1861-9959}, doi = {10.3813/AAA.918017}, pages = {148 -- 155}, year = {2008}, abstract = {Magnetic Resonance Imaging (MRI) of moving organs requires synchronization with physiological motion or flow, which dictate the viable window for data acquisition. To meet this challenge, this study proposes an acoustic gating device (ACG) that employs acquisition and processing of acoustic signals for synchronization while providing MRI compatibility, immunity to interferences with electro-magnetic and acoustic fields and suitability for MRI at high magnetic field strengths. The applicability and robustness of the acoustic gating approach is examined in a pilot study, where it substitutes conventional ECG-gating for cardiovascular MR. The merits and limitations of the ACG approach are discussed. Implications for MR imaging in the presence of physiological motion are considered including synchronization with other structure- or motion borne sounds.}, language = {en} } @article{OehlenschlaegerVolkmarStiefelmaieretal.2024, author = {Oehlenschl{\"a}ger, Katharina and Volkmar, Marianne and Stiefelmaier, Judith and Langsdorf, Alexander and Holtmann, Dirk and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {New insights into the influence of pre-culture on robust solvent production of C. acetobutylicum}, series = {Applied Microbiology and Biotechnology}, volume = {108}, journal = {Applied Microbiology and Biotechnology}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {1432-0614}, doi = {10.1007/s00253-023-12981-8}, pages = {10 Seiten}, year = {2024}, abstract = {Clostridia are known for their solvent production, especially the production of butanol. Concerning the projected depletion of fossil fuels, this is of great interest. The cultivation of clostridia is known to be challenging, and it is difficult to achieve reproducible results and robust processes. However, existing publications usually concentrate on the cultivation conditions of the main culture. In this paper, the influence of cryo-conservation and pre-culture on growth and solvent production in the resulting main cultivation are examined. A protocol was developed that leads to reproducible cultivations of Clostridium acetobutylicum. Detailed investigation of the cell conservation in cryo-cultures ensured reliable cell growth in the pre-culture. Moreover, a reason for the acid crash in the main culture was found, based on the cultivation conditions of the pre-culture. The critical parameter to avoid the acid crash and accomplish the shift to the solventogenesis of clostridia is the metabolic phase in which the cells of the pre-culture were at the time of inoculation of the main culture; this depends on the cultivation time of the pre-culture. Using cells from the exponential growth phase to inoculate the main culture leads to an acid crash. To achieve the solventogenic phase with butanol production, the inoculum should consist of older cells which are in the stationary growth phase. Considering these parameters, which affect the entire cultivation process, reproducible results and reliable solvent production are ensured.}, language = {en} } @article{HengsbachEngelCwienczeketal.2023, author = {Hengsbach, Jan-Niklas and Engel, Mareike and Cwienczek, Marcel and Stiefelmaier, Judith and Tippk{\"o}tter, Nils and Ulber, Roland}, title = {Scalable unseparated bioelectrochemical reactors by using a carbon fiber brush as stirrer and working electrode}, series = {ChemElectroChem}, volume = {10}, journal = {ChemElectroChem}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {2196-0216}, doi = {10.1002/celc.202300440}, pages = {9 Seiten}, year = {2023}, abstract = {The concept of energy conversion into platform chemicals using bioelectrochemical systems (BES) has gained increasing attention in recent years, as the technology simultaneously provides an opportunity for sustainable chemical production and tackles the challenge of Power-to-X technologies. There are many approaches to realize the industrial scale of BES. One concept is to equip standard bioreactors with static electrodes. However, large installations resulted in a negative influence on various reactor parameters. In this study, we present a new single-chamber BES based on a stirred tank reactor in which the stirrer was replaced by a carbon fiber brush, performing the functions of the working electrode and the stirrer. The reactor is characterized in abiotic studies and electro-fermentations with Clostridium acetobutylicum. Compared to standard reactors an increase in butanol production of 20.14±3.66 \% shows that the new BES can be efficiently used for bioelectrochemical processes.}, language = {en} } @article{vonKnobelsdorfBrenkenhoffFrauenrathProthmannetal.2010, author = {von Knobelsdorf-Brenkenhoff, Florian and Frauenrath, Tobias and Prothmann, Marcel and Dieringer, Matthias A. and Hezel, Fabian and Renz, Wolfgang and Kretschel, Kerstin and Niendorf, Thoralf and Schulz-Menger, Jeanette}, title = {Cardiac chamber quantification using magnetic resonance imaging at 7 Tesla—a pilot study}, volume = {20}, publisher = {Springer}, address = {Berlin, Heidelberg}, issn = {0938-7994}, doi = {10.1007/s00330-010-1888-2}, pages = {2844 -- 2852}, year = {2010}, abstract = {Objectives Interest in cardiovascular magnetic resonance (CMR) at 7 T is motivated by the expected increase in spatial and temporal resolution, but the method is technically challenging. We examined the feasibility of cardiac chamber quantification at 7 T. Methods A stack of short axes covering the left ventricle was obtained in nine healthy male volunteers. At 1.5 T, steady-state free precession (SSFP) and fast gradient echo (FGRE) cine imaging with 7 mm slice thickness (STH) were used. At 7 T, FGRE with 7 mm and 4 mm STH were applied. End-diastolic volume, end-systolic volume, ejection fraction and mass were calculated. Results All 7 T examinations provided excellent blood/myocardium contrast for all slice directions. No significant difference was found regarding ejection fraction and cardiac volumes between SSFP at 1.5 T and FGRE at 7 T, while volumes obtained from FGRE at 1.5 T were underestimated. Cardiac mass derived from FGRE at 1.5 and 7 T was larger than obtained from SSFP at 1.5 T. Agreement of volumes and mass between SSFP at 1.5 T and FGRE improved for FGRE at 7 T when combined with an STH reduction to 4 mm. Conclusions This pilot study demonstrates that cardiac chamber quantification at 7 T using FGRE is feasible and agrees closely with SSFP at 1.5 T.}, language = {en} } @article{WildSchrezenmeierCzupallaetal.2020, author = {Wild, Dominik and Schrezenmeier, Johannes and Czupalla, Markus and F{\"o}rstner, Roger}, title = {Thermal Characterization of additive manufactured Integral Structures for Phase Change Applications}, series = {2020 International Conference on Environmental Systems}, journal = {2020 International Conference on Environmental Systems}, publisher = {Texas Tech University}, year = {2020}, abstract = {"Infused Thermal Solutions" (ITS) introduces a method for passive thermal control to stabilize structural components thermally without active heating and cooling systems, by using phase change material (PCM) in combination with lattice - both embedded into an additive manufactured integral structure. The technology is currently under development. This paper presents the results of the thermal property measurements performed on additive manufactured ITS breadboards. Within the breadboard campaigns key characteristics of the additive manufactured specimens were derived: Mechanical parameters: specimen impermeability, minimum wall thickness, lattice structure, subsequent heat treatment. Thermal properties: thermo-optical surface properties of the additive manufactured raw material, thermal conductivity and specific heat capacity measurements. As a conclusion the paper introduces an overview of potential ITS hardware applications, expected to increase the thermal performance.}, language = {en} }